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Abstract

In the recent past, the number of attacks on computer systems that are moti-
vated by profit has increased significantly, and such “cybercrime” is expected to
dominate the threat landscape in the future. With criminal acts becoming more
common in computer related incidents, the need for Computer Forensic experts
to provide admissible evidence for these crimes also rises. Since automation of
certain tasks will be inevitable to be able to deal with the increased demand for
forensic analysis, this diploma thesis is concerned with possible methodologies
for conducting automated forensic analysis. By defining a new process model for
forensic investigations that incorporates Computer Forensics into an Incident
Response framework, commonly used tools and Best Practices are presented.
In order to further establish Live Response as an essential part of a forensic
investigation, critical flaws in current methodology are discussed and improved
techniques are proposed, which help to increase the reliability of automated
Live Response and therefore of the whole investigative process. In this context a
methodology for conducting rootkit detection on Microsoft Windows systems is
developed, which is then integrated into the Live Response process. Altogether,
this thesis will hopefully help to better understand the overall capabilities of
automated forensic analysis methods and their limitations.
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Zusammenfassung

Durch die ständig steigende Anzahl von Angriffen auf Computersysteme, die
durch Profit motiviert sind, steigt auch der Bedarf an gerichtsverwertbaren
Beweisen, um diese Vergehen erfolgreich aufzuklären. Die Computerforensik
beschäftigt sich mit der Gewinnung solcher Beweise – und ist dabei zunehmend
auf die Automatisierung von Arbeitsabläufen angewiesen, um der steigenden
Zahl von Fällen Herr zu werden. Diese Diplomarbeit beschäftigt sich mit der
Möglichkeit der Automatisierung von Teilen des Forensischen Prozesses, wobei
sowohl bekannte als auch neue Techniken und Tools zur Automatisierung un-
tersucht werden sollen. Diese Techniken werden anhand eines neuen Modells
vorgestellt, das die Vorteile von Computerforensik und Incident Response, der
wohldefinierten Reaktion auf sicherheitsrelevante Vorfälle, vereint. Dabei ist die
Verlässlichkeit der Ergebnisse ein wesentlicher Punkt bei der Analyse der ange-
wandten Methoden, daher werden Schwächen verbreiteter Tools und Methoden
diskutiert und, falls möglich, Verbesserungsvorschläge eingebracht. Insbeson-
dere wird hierbei die Durchführung der Live Response, der Datensammlung am
laufenden Rechner, untersucht und diesem Zusammenhang eine Methodologie
zur Erkennung von Rootkits für Microsoft Windows-Betriebssysteme imple-
mentiert. Durch Validierung soll außerdem die Glaubwürdigkeit automatisierter
Analysen gestärkt werden und eine bessere Einschätzung der Leistungsfähigkeit
und Grenzen solcher Methoden ermöglicht werden.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there have been significant changes in the field of computer
security. Several new threats such as bot networks and modular malicious code
have emerged and have become very popular among attackers. Well-known
attack tools such as rootkits and trojans remain dangerous by constantly us-
ing new and improved techniques. Attackers have moved toward small and
focused attacks, often targeting Web browsers or other client-side components.
Since not all of these attacks can be prevented, Incident Response (IR) has be-
come an important component of IT security management, because it provides
procedures for detecting and containing computer security incidents to restore
normal computing services as quickly as possible.

In addition to this, attacks and malicious code to commit cybercrime —
criminal acts that incorporate a computer or Internet component — are ex-
pected to dominate the threat landscape in the future [67]. Many attacks nowa-
days are already motivated by profit, attempting to achieve financial gain by
identity theft, extortion, fraud, or theft of confidential information (see e.g. [84],
[85], [86], [88]). With criminal acts becoming more common in computer related
incidents, the need for valid evidence for these crimes also rises. The field of
Computer Forensics aims at providing such evidence.

1.2 Problem Statement

Due to the increasing number of cases, forensic analysis increasingly depends on
automation to achieve results in a reasonable time. Another key challenge that
computer forensics face concerns the credibility of an analysis. Often the credi-
bility of an analysis is mostly based on the credibility of the expert conducting
the analysis, rather than relating credibility to the methodology applied to in-
vestigate the incident. Therefore, in this diploma thesis, possible methodologies
for conducting forensic analysis will be investigated, to study in which aspects
forensic analysis can be automated while still yielding valid and reliable results.
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1.3 Results

As a first result of comparing the processes of Incident Response and Computer
Forensics respectively, a Common Model for Incident Response and Computer
Forensics has been developed, which integrates forensic analysis practices into
an Incident Response procedure. Attacker threat level and potential damage of
an incident have been identified as major factors when planning the analysis
phase of an investigation and it is shown how to evaluate them in order to
develop a sensible response strategy. After introducing the Common Model,
each step is described in detail and up to date techniques and tools to achieve
the respective tasks are presented.

The “Live Response” step was then scrutinized in even more detail, fo-
cussing on the dependability and credibility of common automated tools and
methods for analysis. This resulted in the detection of flaws in current method-
ology; e.g. when collecting file system metadata from a running Unix system
using current techniques and tools, the timestamps of files and directories are
updated, thus altering the original evidence in an undesirable way. To address
these problems, improved techniques are proposed where possible, resulting in a
more sound methodology for conducting Live Response during an investigation.

The third and last result is a methodology which allows detection of most
publicly available rootkits as part of a Live Response process. After introducing
the basic concepts of Windows rootkits and rootkit detection, an overview of
currently available rootkits and detection tools is given, detailing 11 different
rootkits and 12 currently available detection tools. By experimenting with
the rootkits and detection tools, it could be shown that using a combination
of 3 different detection tools, almost 100% of all rootkit installations can be
detected.

1.4 Outline

In chapter 2, an introduction to both Incident Response and Computer Foren-
sics will be given, and their similarities and differences will be pointed out.
After this comparison, a common model for Incident Response and Computer
Forensics will be proposed in chapter 3. By identifying the determining factors
and parameters of the Incident Response process and the Computer Forensics
process respectively, it will be shown how both of them can be combined into a
single process model, flexibly describing an appropriate response to computer
related security incidents. The different steps of the common process will then
be described in detail, presenting methods and tools commonly used to ful-
fill the respective tasks, and discussing each step’s significance within the new
common model.

Chapter 4 will describe the step “Live Response” in even greater detail,
trying to establish Live Response as a essential part of Computer Forensics.
It will specifically focus on the main question of automating the analysis and
validating the results. Techniques and tools commonly used in Live Response
will be investigated to determine their strengths and weaknesses, and to explore
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the reliability of their results. Whenever possible improved techniques for Live
Response will be proposed, resulting in a recommendation for a more reliable
way of conducting Live Response using automated methods where applicable.

The growing threat of rootkits(see e.g. [83, 87]) will be studied in chapter 5.
After giving some background information about the basics of current rootkit
technology and the underlying concepts, several rootkits and rootkit detection
tools will be presented. The detection tools will then be put to the test in
experiments on real rootkit infected Windows computers, to see how they per-
form when facing different rootkits and operation system version. Ultimately, a
methodology for rootkit detection as part of a Live Response will be proposed
based on the results from the experiments.

The last chapter will summarize the whole thesis and its results, while also
bringing up some open questions which could be dealt with in future work
within the area.

1.5 Final Remarks

Throughout this thesis, a lot of different tools used in Computer Forensics will
be introduced. Open-source tools will be preferred whenever possible, because
they are easily obtainable and offer certain benefits over closed source or com-
mercial software (see e.g. [63]), in particular they are free of charge. A lot of
the tools used are part of The Sleuthkit [57], which is the leading open-source
forensic toolkit. Whenever a command line tool is used, its name will be written
in verbatim font, which is also used to mark the output of console commands.
The sourcecode of certain perl scripts taken from [75] has been added in the
appendix.
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Chapter 2

Background

2.1 Introduction

This chapter will give an introduction to Incident Response (IR) and Computer
Forensics (CF), two main concepts of handling and investigating computer se-
curity incidents. A computer security incident can be defined as “a violation or
imminent threat of violation of computer security policies, acceptable use poli-
cies, or standard security practices” [71]. Incident Response deals with com-
puter security incidents in a well-defined manner to detect incidents, minimize
the damage done to the organization, fix the weaknesses that were exploited
and return to normal operations.

Computer Forensics is a scientific discipline which is concerned with the
collection, analysis and interpretation of digital data connected to a computer
security incident; it is sometimes also called digital forensics. Since any device,
data or other resource subject to a forensic examination may be subsequently
used as evidence in a court of law, Computer Forensics puts special emphasis on
the correct treatment of potential evidence to prevent it from being altered or
tampered with. Because of the same reason, any technique or tool used during
an investigation has to meet strict standards, and any conclusions drawn must
be scientifically reasonable. It is important to note that an Incident Response
procedure can sometimes include a full forensic investigation, the conditions
will be discussed in the next chapter.

The following sections will thus explain the process of IR and CF respec-
tively in more detail in order to point out the basic differences and overlaps.
Both sections will describe the process on a rather abstract level, without re-
ferring to implementation of certain steps or specific software to be used. This
will be postponed until the presentation of the common model in chapter 3.
Large part of this chapter is based on [78] and [66], so theses sources will only
be cited if absolutely necessary.

2.2 Incident Response

As mentioned in the introduction, Incident Reponse is an organization’s reaction
to unlawful or unacceptable actions involving a computer or network compo-
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nent. Instead of being caught unprepared and starting a chaotic and possibly
devastating response, a systematic and well-organized approach should be used
to react. Therefore incidents are usually handled by a so-called Computer Secu-
rity Incident Response Team, or CSIRT, which is comprised of personnel with
different qualifications that are needed during the response process, in particu-
lar people with legal and technical expertise. The CSIRT will then coordinate
the appropriate response to an incident, effectively providing a Computer Se-
curity Incident Response Capability (CSIRC).
Some of the key benefits that an organized CSIRC offers are:

• Confirmation whether an incident actually occured

• Quick detection, containment and recovery

• Minimizing loss or theft of confidential information

• Ensuring proper handling of evidence and documentation

• Increasing protection against future attacks

Achieving all this can seem like an overwhelming task, especially when one
considers that often incidents put a lot of pressure on the team responsible
for the resolution of the problem, which could for example threaten the very
existence of a company. Another characteristic of computer security incidents
is their wide variety, which includes, but is not limited to:

• Denial of Service attacks

• Theft of confidential information

• Unauthorized access

• Extortion

• Identity Theft

• Spam or harassment

• Possession or distribution of child pornography

To be able to manage these different kinds of incidents and their unique com-
plications regarding public law, business operations or even a company’s rep-
utation, the process of Incident Response has traditionally been broken down
into a number of logical steps. The following model has been proposed in [78],
which is a major reference in the field of Incident Response.

The methodology describes the process of Incident Response using seven
different phases, which are also illustrated in Figure 1 on page 14. A short
summary of each step will be given, more details can be found in chapter 3.
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Figure 1: The Incident Response Process, taken from [78]

Pre-incident preparation

Pre-incident preparation is an ongoing phase, and it is actually the only one
that takes place even before an incident occurs. Its purpose is to prepare the
organization and the CSIRT for a possible incident. Preparing the organizion
may involve implementing host- and network-based security measures, e.g. an
Intrusion Detection System. To make sure that a CSIRT is able to handle an
incident well, all hardware and software needed have to be provided. Appro-
priate training for the members of the CSIRT is mandatory to maintain an
effective Incident Response Capability.

Detection of incidents

Since obviously no incident can be responded to until it is detected first, de-
tection of incidents is a very important part of IR. Generally speaking, anyone
from a system administrator to a regular employee with no technical background
could detect an incident. That is why it is important to have clear guidelines
for all members of an organization explaining how to react to suspicions that
something might be wrong. Most importantly it should be known who should
be notified and what details have to be recorded, so that the CSIRT may take
over the IR process as quickly as possible to further investigate the potential
incident.

Initial Response

During Initial Response, the collection of information concerning the incident
that has started in the previous phase continues. The goal is to gather enough
information to allow formulation of an adequate response strategy in the next
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step. Typically, the data that is collected in this step consists of interviews of
any persons involved in reporting the suspected incident, and available network
surveillance logs or IDS reports, that may indicate that an incident occured.
At the end of this phase, the CSIRT should have confirmed that an incident
actually occured, should have identified the type of incident and the affected
hosts and users, and should be able to assess the potential impact or damage.
This will allow to make an informed decision about a viable response strategy.

Formulation of response strategy

The goal of this phase is to formulate a response strategy which best fits the
situation, thus “considering the totality of the circumstances” [78] that surround
the incident. These circumstances include the criticality of the affected systems
or data, what kind of attacker is suspected and what the overall damage might
amount to. Also, an organization’s response posture, which defines its policy
regarding the response to computer security incidents, may have a large impact
on the choice of a response strategy. Because an incident might also induce
legal or administrative action, the development of the strategy has to involve
people responsible for the respective areas, which means e.g. upper management
executives or the Human Resources department.

Investigation of the incident

During the investigation of the incident, different types of evidence relevant
to the incident, e.g. host- or network-based evidence, are collected in order
to reconstruct the events that comprise the computer security incident. This
reconstruction should provide explanations for what happened, when, how or
why it happened and who is responsible. To achieve this, an investigation is
typically divided into two steps: Data Collection and Data Analysis.

Examples of data collected during the Data Collection are host-based in-
formation retrieved from a live system, a duplication of a compromised host’s
harddrive or network surveillance logs. While collecting these information it is
advisable to use forensically sound methods; this will be detailed later in this
thesis.

In the Data Analysis step, the previously collected information is reviewed to
uncover the details behind the incident. A thorough discussion of the method-
ology applied during analysis will follow in the section on Computer Forensics,
and in even more detail in chapter 3. It should be noted that often the col-
lection and analysis of relevant data may take turns, effectively turning the
investigation into a series of feedback loops until the final result is obtained.

Reporting

After the investigation of a computer security incident is finished, all the findings
and results have to be documented in a written report. In this report, all
investigative activities have to be documented, and all conclusions drawn have
to be explained. The report should be written in a concise, yet understandable
way, so that even non technical readers can follow. Because the results of the
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report might be used as evidence during a lawsuit, the report should be able to
hold up against legal scrutiny.

Resolution

The purpose of the Resolution phase is to take the right measures to contain
an incident, solve the underlying problems that caused the incident and to take
care that a similar incident will not occur again. All the necessary steps per-
formed should be taken and their progress supervised to verify that they are
effective. It is important that changes to the affected systems are only done
after collecting possible evidence, otherwise that evidence might be lost. After
the resolution of the incident is complete, it may be necessary to update se-
curity policies or the IR procedures, if the response to the incident exposed a
weakness in the current Practices.

Most of the steps above will be included in the model proposed in chapter
3. The next section will introduce a Computer Forensics process model, and
the common features of both will become clear.

2.3 Computer Forensics

Computer Forensics, or Digital Forensics, is a forensic science that deals with
obtaining, analyzing and presenting digital evidence, which can be defined as
“any data stored or transmitted using a computer that support or refute a
theory of how an offense occured or that address critical elements of the offense
such as intent or alibi.’ ’[66]. By employing accepted and proven techniques
and principles, which are also applied in other forensic sciences, admissibility
in a court of law and credibility of the evidence is achieved. This includes
for example a high level of objectivity in every step of an investigation, and
the use of reliable, repeatable and well-documented methods throughout the
examination.

The Investigative Process Model [66] (see Figure 2 on page 17) which will be
described now is in fact a more general approach to investigation of a computer-
related offense, as it also includes steps which normally tend to fall into the
responsibility of law enforcement personnel rather than the forensic analyst.
Nevertheless it is a good choice for the purposes of describing an organized CF
process and it will allow to show the similarities and differences between the
CF process and the IR process described earlier in this chapter.

Just like in the previous section, each step in the process model will now
be explained in an abstract way, this time pointing out the similarities and
overlaps with the steps of the IR process model.

Incident alerts or accusation

The CF process starts with an incident alert or an accusation which could be an
automated alert from an IDS or a concerned citizen reporting possible criminal
activity. At this point, an initial assessment of the reliability of the source of the
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Figure 2: The Investigative Process Model, taken from [66]

alert is done, and some facts surrounding the suspected incident are gathered
to get an idea of what the investigator is dealing with. Notice that there is
no Pre-Incident Preparation Phase because an investigator is not necessarily
working for the organization that reported the incident, but rather contacted
when an incident is suspected.

Assessment of worth

During this phase, it is decided whether a detailed investigation should take
place or if the suspicion of an incident that raised the alarm can be discarded.
Generally this depends on how severe the problem appears to be, i.e. what the
potential damage might be or whether the incident can be contained easily.

Incident/Crime scene protocols

If the decision in the previous step is to conduct a full investigation of the
incident, all potential evidence at the crime scene has to be secured and doc-
umented using accepted protocols and procedures. The goal is to “freeze” the
evidence in place and provide a “ground truth for all activities to follow” [66].
Actual analysis is not done at this point.
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Identification or seizure

After securing the crime scene, all items that may contain potential evidence
for a suspected incident have to be seized and a chain of custody for all evidence
must be started.

There are numerous legal implications and restrictions to securing a crime
scene and seizing material from a crime scene. Excellent resources regarding
these two steps during an investigation are [92] and [91], which describe the re-
covery of digital evidence from law enforcement’s point of view. This knowledge
can also be valuable to a digital investigator and helping him to work together
with the other parties involved in an investigation.

Preservation

After all potential evidence has been seized and is available to the digital inves-
tigator, duplicate copies of all data sources are made to ensure integrity of the
original evidence. Actual analysis is only done on the copies, while the original
evidence is securely stored and cataloged. This step is in fact the first step that
is part of the actual digital forensic investigation, and it makes use of trusted
and reliable tools to perform the duplication of evidence.

Recovery

The first step of a computer forensic analysis consists of recovering any data
that may have been deleted, hidden, encrypted or is otherwise unavailable to
the forensic investigator in its current state. The goal is to recover anything
possible — “throwing out a large net” — so that the maximum of data is
available for further analysis, hoping that it will contain valuable evidence.

Harvesting

During the Harvesting phase, metadata, i.e. data about data, are collected and
used to organize the large amount of data that the last step produced. Often,
files are grouped according to their filetype, or by their temporal relationship
with respect to file timestamps. By slowly starting to make sense of all the
available data, the reconstruction of events and the development of different
hypotheses about what might have happened starts. The structured data that
is the output of this phase represents the first step towards extracting the
evidence out of all the data that was collected in the beginning.

Reduction

Since the volume of data under investigation may be very large, it is crucial for
a forensic examiner to eliminate any unnecessary data in order to focus on the
more important pieces of information. Still, this does not mean that evidence is
reviewed based on content, but rather that data is eliminated based on filetype
or by using hash databases of known good files. The desired result is “the
smallest set of digital information that has the highest potential for containing
data of probative value” [66].
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Organization and search

Organization of the data extracted in the Reduction step helps to make the
actual analysis easier and can also simplify referencing to specific data during
the following phases. A searchable index is often used to allow efficient retrieval
of data and thus speed up the analysis.

Analysis

In the Analysis step, all the data that has been prepared in the steps before will
be analyzed in detail, this time also incorporating the actual content, e.g. the
content of text files. Finding out how and why an offense occured is investigated
by establishing links between different pieces of evidence, ultimately trying to
identify the offender and offer comprehensive proof that supports the conclusion.
With standard scientific methods such as showing correlation between certain
events, experimenting with the data and rigorously validating the results, an
investigator can present digital evidence that can be relied upon even under
high standards such as that of a court of law.

Reporting

The final report should accurately document each step of the investigation, back
up any conclusions drawn during the examination with evidence and report on
the methods used to obtain the evidence. Whenever possible, accepted and
known protocols and methods applied during the analysis should be referenced
to increase the credibility of the investigation and its results.

Persuasion and testimony

Sometimes it may be necessary for an examiner to testify in court or to answer
to decision makers regarding the results of his report. Trying to explain the
details of an investigation to a mostly non-technical audience can be difficult
and therefore special techniques exist that allow an expert to do so in an un-
derstandable fashion.

The investigative process described above is a way of obtaining evidence
in a reliable, accurate and repeatable way, basing all conclusions and findings
upon facts and scientific reasoning. It will be shown how this strict scientific
methodology used during the forensic analysis steps can be integrated into an
Incident Response process and how it can improve the overall process.

2.4 Comparison and Discussion

In this chapter, two models for Incident Response and Computer Forensics
respectively have been introduced and their different steps and procedures have
been explained. There are several obvious differences between both approaches,
since both emphasize different objectives when responding and investigating a
computer incident or offense.
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The Incident Response process clearly focusses on management issues and
integration of the investigative process into a business environment. For this
reason, it has to take into account things such as a possible hit to an orga-
nization’s reputation and weighing off the monetary cost of an investigation
against the potential damage the incident may cause. When proposing a com-
mon model for Incident Response and Computer Forensics in the next chapter,
the management issues will be addressed in a similar way as in the Incident
Response model described here. The different emphasis is also reflected in the
way a response strategy is developed in the IR model, compared to the Assess-
ment of Worth step in the CF model. While in the case of IR, there is a wide
variety of possible response strategies, in the case of the Investigative Process
the question at this point will simply be if it is necessary to assign additional re-
sources to the case to investigate further, or if the investigation can be stopped
altogether.

Another striking discrepancy between the IR and CF model is, that all the
steps starting from Preservation up to the Analysis step in the CF process model
correspond to just one step in the IR process model, the Investigation phase.
This is because during Incident Response, the actual investigation can take on
various forms or might also be left out altogether in some situations. Computer
Forensics investigator on the other hand will always stress the importance of
scientific and forensic methods during an investigation in order to obtain evi-
dence that is admissible, i.e. that it can be presented in a court of law. For that
reason the analysis steps are clearly seperated and structured in a subtle way
to allow a systematic approach to an investigation. It is mandatory to use the
scientific principle when drawing conclusions from the evidence, which means
that not only has to be reconstructed what has happended, but also it has to be
shown why other explanations can be ruled out; this practice is also known as
falsification. The common model for IR and CF will incorporate these forensic
principles and procedures into the investigation step that was described rather
loosely in the IR model.
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Chapter 3

Common Process Model for

Incident Response and

Computer Forensics

3.1 Introduction

In this chapter a Common Process Model for Incident Response and Computer
Forensics will be proposed, which is based upon the two process models intro-
duced in the previous chapter. The motivation for creating a Common Model
(CM) that, in a way, merges two already existing processes was twofold.

On the one hand, Incident Response and Computer Forensics are two highly
related topics, and it is questionable whether a strict separation makes sense
at all. Both investigate a large number of different computer security incidents
or offenses, sometimes use identical tools and methods and also share some of
the key phases of the investigation, although they may set different priorities.
Secondly, the specific view of the investigative process in IR and CF respec-
tively may sometimes be too narrow to achieve optimal results in either case.
A Computer Forensic investigation may lack the proper management that is
enforced in an IR investigation, where the investigative efforts are coordinated
with all parts of an organization, e.g. legal counsel, Human Resources and busi-
ness executives. Without these, the “bigger picture” of an incident might not
be seen.

On the other hand, the scientific standards of a forensic investigation can
give benefit to an Incident Response procedure, as it promotes objectivity
throughout the whole process and a precise and well-documented analysis. Be-
cause the large effort to conduct a full-scale forensic investigation may not be
necessary in every case, the Common Model will identify certain parameters
that determine the extent of an investigation.

After the Common Model has been introduced, the different steps will be
explained in detail, discussing their function, methods and specific techniques
that are used today. In each subsection the particular step’s significance with
respect to the Common Model, as well as its relation to similar steps that were
part of the Incident Response or Computer Forensics process models will be

21



discussed.

3.2 Common Process Model for Incident Response

and Computer Forensics

The Common Process Model for Incident and Computer Forensics is a proposal
for a new process model to investigate computer security incidents, and its aim
is to combine the two concepts of Incident Response and Computer Forensics
to improve the overall process of investigation. In fact the Common Model
somewhat resembles a Computer Forensic investigation which is embedded into
an Incident Response procedure.

3.2.1 Phases of the Common Model

The Common Model consists of three main phases: Pre-Analysis, Analysis and
Post-Analysis (see also Figure 3).

Analysis Phase

Pre-Analysis Phase

Detection of

Incidents
Initial Response

Formulation of

Response

Strategy

!
Incident Occurs

Pre-Incident Preparation

Live

Response

Forensic

Duplication

Data

Recovery
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Organization

Analysis

Post-Analysis Phase

Report Resolution

Figure 3: Common Process Model for Incident Reponse and Computer Forensics
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Pre-Analysis Phase

The Pre-Analysis Phase contains all steps and activities that are performed
before the actual analysis starts; in this case, analysis means that compromised
hosts or data are reviewed in detail with the intention to reconstruct the reason
for the computer security incident in question. Using this notion, a quick survey
of the affected host during the Initial Response step does not qualify as actual
analysis. The three steps of the Pre-Analysis Phase correspond to the respective
steps in the Incident Response process model introduced in chapter 2, although
the last step, Formulation of Response Strategy, differs slightly.

Analysis Phase

Actual analysis takes place in the Analysis Phase, which uses part of the In-
vestigative Process Model’s steps presented earlier in the Background chapter.
The sequence of steps is based on the Computer Forensics process model, ex-
cept for the step of Live Response, which did not appear explicitly in either of
the two previous models. In short, Live Response means collecting information
about an incident on hosts that are still running, i.e. “live” — as opposed to a
“dead” analysis of devices after the host containing it has been powered down.
Live Response has become increasinlgy popular over the last years because it
offers certain benefits over a mere dead analysis; Chapter 4 will discuss Live
Response in great detail.

Although the process model incorporates the steps that are usually done
during a forensic investigation, such a full-scale approach might not be neces-
sary in all cases. A response team will have to decide whether the cost and
effort is justified in each specific situation, taking into account a lot of differ-
ent factors, e.g. the severity of the incident or existing legal contraints. The
determing factors which will influence this decision are explored in the section
“Deliberating a full-scale forensic analysis”.

Post-Analysis Phase

Following the Analysis Phase, the Post-Analysis Phase is first of all concerned
with documentation of the whole activities during the investigation in a written
report; both classic models include this step. In addition to a written report,
an examiner may also be asked to testify about the results of the analysis in
a court of law, in which case he has to prepare properly to be credible and
able to defend his work even under cross-examination. After the report has
been completed, the incident has to be resolved by correcting the underlying
problems that allowed the incident to happen; at the same time the incident
handling procedures should be updated if necessary.

3.2.2 Deliberating a full-scale forensic analysis

After a computer security incident has been detected and some initial informa-
tion concerning the incident has been collected, a suitable response strategy has
to be chosen; this step is called Formulation of Response Strategy. In the case of
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the Incident Response process model, this simply means that after assessing the
potential damage, criticality of the affected hosts and data and taking into ac-
count an organization’s response posture, a strategy is formulated which seems
to be the optimal way to resolve the incident. It has to be kept in mind, that a
viable response strategy might in some cases be to just reinstall a compromised
hosts’s operating system, apply all patches and then resume normal operations
again. Also, such a response strategy does not have to respect forensic princi-
ples, it may be perfectly adequate to disregard them altogether, depending on
the particular incident.

In the Common Model, Formulation of Response Strategy includes an addi-
tional decision regarding the further investigation. In this step, an investigator
or team of investigator has to decide, whether a full-scale forensic analysis is
necessary. Full-scale means that the whole process of Live Response, Forensic
Duplication up to the Analysis step as depicted in figure 3 has to be executed
in full, without taking any shortcuts, and granting all the required resources to
thourougly investigate the incident. Forensic means that in each step, foren-
sic principles have to be respected, as introduced in the section on Computer
Forensics.

It is clear that this type of investigation in general requires a lot of resources,
because due diligence has to be invested for the analysis, and it may even cause
downtime of its own, because hard drives have to be imaged, systems might
have to be isolated or taken to the lab, and so on. This is why the decision to
go for the full-scale forensic analysis should not be made lightly, but it should
be made if the details of the incident in question call for it. The Common
Model provides a comprehensive way to make the decision whether a full-scale
forensic analysis is warranted or whether other response strategies may be more
appropriate.

Determining factors

When planning analysis of a computer security incident, there are usually quite
a lot of factors that might influence the decision about how to conduct the
analysis. When deliberating the particular question of whether to conduct a
full-scale forensic investigation, the Common Model focusses on two main fac-
tors, which will also be called “soft” factors, because they can only be estimated
and depend largely on the properties of each particular incident:

• attacker threat level

• potential damage

The attacker threat level denotes the estimated threat of an attacker, which
for this matter is any person who is directly responsible for the incident in
question, whether it be by actively attacking a computer system or for example
by violation of a security policy. Such a threat measure can be derived from a
more detailed attacker model, which is a model of the attacker with his skills and
intentions, thus allowing to assess the threat he poses for the organization under
attack. In the Common Model, a high attacker threat level favors a full-scale
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forensic analysis, because a highly skilled attacker is likely to cover his tracks
or even plant false clues. It may also be desirable to completely reconstruct the
incident if a skilled attacker is involved, in order to find out what exactly the
attacker did and how he did it; only a thorough forensic analysis can fulfill this
requirement.

The potential damage of the incident under investigation is the second key
factor to consider when considering the type of analysis to go for. Damage in
this case means financial loss as well as loss of reputation or credibility, and since
the actual damage of in incident is generally not known exactly in such an early
state of the response process, it can only be approximated. Generally, a high
potential damage will favor the decision for a full-scale forensic investigation,
because in these cases, criminal prosecution or filing for civil complaint is a
likely outcome. Hence, reliable and admissible evidence may be needed to fully
resolve the incident.

With these two factors in mind, an abstract equation can be used to illus-
trate the decision:

AttackerThreatLevel × PotentialDamage > Threshold

If this equation evaluates to true, a full-scale forensic analysis should be
conducted. That means that the combination of a skilled attacker and high
potential damage will influence the response strategy in a way that favors a
forensic analysis, while in the case of an unskilled attacker or low potential
damage, such an analysis is not justifiable.

Constraints

Apart from these soft factors, there are also two “hard” factors which are mostly
independent from each other and from the soft factors, and which can call for
a full-scale forensic investigation: an organization’s Response Posture and legal
constraints.

A Response Posture describes an organization’s general stance towards re-
sponding to incidents. It contains general guidelines as well as prefered response
procedures for a specific type of incident, e.g. what has to be done if confidential
customer data has been compromised, or the organization’s web site has been
defaced. It may also include recommendations regarding administrative actions
should an employee violate a corporate policy, e.g. how to deal with theft of
trade secrets or illicit internet use.

In some cases, a full-scale forensic analysis may be demanded explicitly by
the Response Posture, for example because the organization pursues a “zero-
tolerance” policy towards computer security incidents and will always try to
get to the bottom of each case. In other cases a forensic investigation might
be necessary because of the likely outcome of the investigation, in particular
whenever the resolution could include administrative or legal action. In these
cases admissible evidence is required, regardless of the attacker threat level or
the potential damage of then incident, therefore it is a hard factor that can
indicate the need for a full-scale forensic analysis.
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Legal constraints can be another hard factor that will demand a full-scale
forensic analysis of the incident. In some cases, an organization will choose to
involve law enforcement and make a report against a suspected attacker. It may
even be mandatory to report a suspected crime, e.g. the failure to notify the
authorities about suspected possesion of child pornography may make an orga-
nization liable [78]. There have also been cases where the failure to objectively
analyze an incident has led to negligence charges against the investigators [66].
Because of these possible complications, a well documented and objective ap-
proach to analysis of such incidents is necessary; that means a full-scale forensic
analysis has to be conducted.

Summary

During the formulation of response strategy step in the Common Model, a de-
cision has to be made about whether to conduct a full-scale forensic analysis of
the incident. This decision will be influenced by two soft factors, the attacker
threat level and the potential damage, and two hard factors, the Response pos-
ture and legal constraints. If the product of attacker threat level and potential
damage is estimated to exceed an abstract threshold, a full-scale forensic anal-
ysis should be conducted. On top of that, an organization’s Response Posture
and certain legal constraints can call for a forensic analysis, independent of each
other and the soft factors.
Having introduced the Common Model for Incident Response and Computer
Forensics and the factors to consider when deliberating a full-scale forensic anal-
ysis, the specific steps of the Common Model will now be described in detail,
pointing out their significance within the whole process as well as presenting
current tools and methods that are commonly used.

3.3 Pre-Analysis Phase

Not surprisingly, the Pre-Analysis Phase (see figure 4) is comprised of all steps
that are performed before the actual analysis of an incident starts. This in-
cludes Pre-incident Preparation, which is different from the rest of the steps
because it is an ongoing phase, containing preparation procedures for a possi-
ble incident. Incident Detection is concerned with incident detection mechanism
and procedures, and Initial Response deals with gathering initial information
that allow to choose an appropriate response strategy in the Formulation of
Response Strategy step.

3.3.1 Pre-incident Preparation

Goals

The goal of Pre-incident Preparation is to enable an organization to handle a
computer security incident in a well-defined manner that allows quick and ef-
fective resolution. As mentioned before, Pre-incident Preparation is actually an
ongoing phase where appropriate measures are taken to protect an organization
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Figure 4: Pre-Analysis Phase of the Common Model

from the grave consequences of a possible incident. This includes strengthen-
ing the defenses of invididual hosts and networks, but since no perfect defense
against incidents exists, Pre-incident Preparation also incorporates training in-
cident responders and providing the technical infrastructure to pursue a suc-
cessful investigation in the case of an incident. In addition to that, development
of appropriate policies for incident response procedures has to be taken care of.

Methods, Tools and Best Practices

Usual measures taken during Pre-incident Preparation can be divided into two
main categories: those that prepare the personnel that is responsible for re-
sponding to incidents, in particular the CSIRT, and those that concern prepa-
ration of the organization or environment that an incident may occur in.

All personnel involved in an incident’s investigation have to be properly
trained and equipped to be able to adequately respond to an incident. In ad-
dition to encouraging their personnel to voluntarily expand their knowledge,
an organization should consider affording professional courses on Incident Re-
sponse and related topics, as they are for example offered by SANS Institute
[56], Foundstone [16] or Black Hat [3]. On top of that, all software and hardware
needed for an investigation has to be up to date and ready when an incident
actually occurs. Hardware that may be necessary in an investigation includes:

• analysis workstations with powerful CPU, large hard drives, DVD-RW,
possibly tape drive

• extra connectors, cables, adapters for storage media

• forensic software dongles

• hardware write blocker

• blank CDs, DVDs, etc.
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• digital camera

• toolkit

• flashlight

• folders, labels, markers, containers, paper, documentation forms

Regarding software, the following list can give an idea of what should be
available and prepared in the case of an incident:

• several native operating systems on the analysis workstation, e.g. by
using a multi-boot system

• forensic tools (Encase, FTK, TCT, Sleuthkit, etc.)

• boot disks

• software write blocker

• backup of complete setup to allow for quick recovery

For the preparation of an organization and the environment in which an inci-
dent may occur, classical host-based security measures like firewalls, organized
backups or the use of strong authentication and encryption are mandatory.
An excellent resource for host-based security measures is [69]. Complement-
ing these, network-based monitoring and security mechanism should be imple-
mented, using e.g. an Intrusion Detection System or similar methods. Network-
based monitoring is described for example in [61]. With these precautions in
place, a lot of incidents can be prevented, while others can be quickly and easily
detected. Logging and monitoring can also help to collect valuable data while
an incident is still ongoing and aid in the actual analysis steps. Regular vulner-
ability assessments and penetration tests should be performed to evaluate the
quality of the security precautions in place.

Another aspect concerning the preparation of an organization for possible
computer security incidents is the definition of proper policies. This includes
both a general statement of an organization’s response stance, called Response
Posture, as well as policies and rules regarding the monitoring of end users or
network traffic. It has to be assured, that a proper investigation can take place
without breaching privacy rights or violating public law. So-called Acceptable
Use Policies define what is considered an acceptable or unacceptable use of
computer resources, and thus which behaviour can be considered a computer
security incident. A good overview of the possible legal or business implica-
tions of an investigation can be found in [78], which stresses the importance of
appropriate policies in an organization.

Summary

Pre-incident Preparation prepares an organization and its incident response
personnel for investigation of computer security incidents or prevents them
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altogether. Enforcing a thorough preparation is a basic requirement for any
organization that wants to build up an effective Incident Response Capability,
thus making it a vital step to secure valuable data and computer systems.

3.3.2 Incident Detection

Goals

Incident Detection is about establishing proper incident detection guidelines,
allowing for quick detection of computer security incidents. Proper notification
and reporting procedures have to be in place, making it possible to transfer
control over the remaining investigation to the CSIRT as soon as possible.

Methods, Tools and Best Practices

Incident Detection normally occurs whenever a person or security mechanism
suspects an unauthorized or unlawful action involving a computer system or
network. Actually suspicion of an incident can come from a lot of different
sources, e.g.:

• End users

• Security personnel

• IDS

• System administrators

• Human Resources

This is why there have to be clear guidelines for everyone that may detect
a possible incident, whom to contact and how to react in such a situation, so
that no potential evidence is destroyed. If an incident is reported, some initial
information concerning the detection should be recorded, including:

• Date and Time of detection

• Who is involved in the incident (by detection or otherwise)

• What kind of incident is suspected

• Which hosts/networks are involved

Ideally, appropriate forms for this checklist should be provided, to allow a
standardized way of documenting the incident detection. Once completed, the
CSIRT should be alerted and informed about the suspected incident, so that
they can take control of any further investigation.
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Summary

Detection of Incidents is one of the most important steps in an investigation of
a computer security incident, because without it, there would not be an inves-
tigation at all and the incident would pass unnoticed. Yet it is also the phase
during an investigation, during which the responsible experts, i.e. the CSIRT,
have the least control over the incident response process [78]. Proper detection
of incidents and documentation of initial details enables an organization to de-
tect possible incidents reliably and lets the CSIRT start the next steps of an
investigation in a sensible manner.

3.3.3 Initial Response

Goals

During the Initial Response step, the goal is to have the CSIRT confirm a sus-
pected incident or discard the suspicion by collecting and reviewing information
related to the incident. If the incident is confirmed, its type and scope should
be determined, in order to be able to develop a suitable response strategy in
the following step of the Pre-Analsis Phase. Initial Response also includes ini-
tializing well-documented containment measures to limit the potential damage
of an ongoing incident.

Methods, Tools and Best Practices

In order to confirm a possible computer security incident and develop an ap-
proriate response strategy, different sources of information have to be collected.
If possible, this information should be collected only from sources other than
the actual victim or target of an attack, for example:

• Interviews of people involved in the incident

• Network-based evidence, e.g. IDS logs

• Firewall and router logs

• Classic physical surveillance data, e.g. security cameras or access card
reader logs

Often network monitoring will be initiated to confirm an ongoing incident
and possibly collect additional data. In rare cases, the Initial Response may
also include procedures normally taken during Live Response; in this case all
precautions that apply for Live Response also have to be respected in this earlier
part of the process. If necessary, possible harm for an organization can be
avoided by containing the incident, e.g. by removing compromised hosts from
the network, initializing packet filtering at routers or firewalls or by keeping
suspected persons away from the “crime scene”. As always all activities have
to be documented accurately to maintain well-organized incident handling.

Once an incident has been verified, the information collected is used to
estimate the incident’s impact on users, systems and business operations. This
assessment will then be used to formulate an adequate response strategy.
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Summary

During Initial Response data collection is started in order to verify whether an
incident actually occured, or if the suspicion was just a false alarm. Through
review of the information collected and subsequent assessment of the scope of
the incident, formulation of a successful response strategy in the last step of
the Pre-Analysis Phase becomes possible. Another benefit of this well-defined
approach to initial handling of an incident is that it prevents rash or chaotic
reactions and helps everyone involved to focus on the most important tasks at
hand.

3.3.4 Formulation of Response Strategy

Goals

The goal of the Formulation of Response Strategy step is to determine the
most appropriate strategy to handle the incident in question. In particular, the
response team will have to decide whether a full-scale forensic analysis of the
incident is warranted.

Methods, Tools and Best Practices

When trying to find an optimal response strategy to deal with a computer
security incident, a lot of factors will influence the process of reaching a decision;
this is also sometimes called “considering the totality of the circumstances”
[78]. Some of the more obvious properties of a specific incident, which have an
influence on the adopted response strategy are:

• Criticality of the compromised hosts/data

• Potential perpetrators

• Apparent skill level of the attacker

• Downtime caused by the incident

• Monetary loss

These are factors that are directly related to the incident and will influence
how many resources are deployed to investigate the case and what kind of
approach will be used to tackle the problem. Apart from these factors, there
are also a number of more subtle ones that nevertheless can have a large impact
on the choice of a response strategy:

• Political considerations, e.g. what happens if the incident becomes public

• Legal constraints, e.g. liability for not reporting certain incident to law
enforcement

• Business objectives
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• Acceptable Use Policy, monitoring policy, previous enforcement of policies

I should be noted that, in addition to determining the course of the Anal-
ysis Phase, planning administrative or legal action is also part of a Response
Strategy.

In the Common Model, the Formulation of Response Strategy step is also
the time when it has to be decided, whether a full-scale forensic analysis should
be conducted. As described in section 3.2.2., a response team has to assess the
attacker threat level and the potential damage of an incident. If the combination
of both is high, i.e. either one is very high or even both, a full-scale forensic
analysis should be seriously considered. Due to certain constraints symbolized
by an organization’s Response posture and possible legal constraints, a forensic
analysis may be mandatory even if the soft factors would not indicate it.

Summary

Carefully planning the actual Analysis Phase of an investigation of a particular
incident is a crucial step; only when deliberating all circumstances and the
various influences, an appropriate response strategy can be developed. The
choice of a specific response strategy will determine the further progression
of the investigation, especially because the decision about initiating a full-scale
forensic analysis is made during Formulation of Response Strategy. All following
activities should be planned out to ensure a controlled Analysis Phase and a
successful outcome.

3.4 Analysis Phase

During the Analysis Phase (figure 5), the actual analysis of the compromised
computer systems takes place, as outlined in a response strategy that was de-
veloped in the previous phase. Starting with Live Response, data concerning
the incident are first gathered while the computer systems in question are still
running. The rest of the Analysis Phase deals with “dead” analysis of systems,
i.e. when they have been powered down. After performing a Forensic Dupli-
cation of any storage media involved, several stages of data collection methods
are applied in the Data Recovery and Harvesting steps. In the Reduction and
Organization step, this collection of data is then reduced and organized to make
it as useful as possible for the actual Analysis step, in which the interpretation
of data and reconstruction of events takes place.

If the previous phase resulted in opting for a full-scale forensic analysis, then
all of the steps of the Analysis Phase have to be performed without taking any
shortcuts. If such a thorough investigation is not wanted, some of them may
be skipped or shortened; this will be mentioned specifically for each step later
on. Notice that some response strategies may not even demand any analysis at
all and a response team will go straight to the resolution phases.
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Figure 5: Analysis Phase of the Common Model

3.4.1 Live Response

Because Chapter 4 will contain a detailed discussion of current Best Practices
for Live Response for both Windows and Unix systems, this section will only
give a brief introduction into the methods for data collection and techniques.
Considerations regarding the implications of working on a live evidence system
will also be postponed until later, when Live Response techniques are critically
analyzed to point out flaws in the methodology.

Goals

Live Response is concerned with collecting data from “live” computer systems,
that means the systems under analysis are still powered on and running, in
contrast to “dead” analysis on systems that have been powered down. The goal
is to collect volatile data, i.e. data that can not be recovered from a forensic
duplication alone after having cut off the power supply. In addition to this
it has been common to collect a number of non-volatile information too for
convenience. All these data collection activities should modify the running
system as little as possible so that the original evidence is not altered more
than absolutely necessary.

Methods, Tools and Best Practices

Certain pieces of data on a running computer are only present in main memory,
that means that they will be erased once the computer is switched off. There
is no way to reconstruct these information later, including for example:

• system data and time

• list of current network connections and open TCP/UDP ports
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• running processes

• open files

On Unix-based operating systems, most of these information can be col-
lected using standard system tools such as ps or netstat. For Windows sys-
tems, a combination of built-in tools and freeware system administration tools
can be used, e.g. from Sysinternals [46].

In addition to collecting these volatile data, it has become common to col-
lect non-volatile information from running systems, usually out of convenience.
Non-volatile data could also be recovered during a standard dead analysis, but
collecting it from a live host may have certain advantages:

• transfer logfiles, e.g. /var/log/messages: allows to quickly assess the
scope of an incident and its nature

• list login information with w or who: easy access to the related logfiles that
would have to be parsed with considerable effort during a dead analysis

• checking for rootkits: if a rootkit is installed on an evidence system,
the output of Live Response tools may be manipulated to hide certain
information

The combination of volatile and non-volatile information collected in Live
Response can often contain valuable clues for an investigator to estimate the
extent of an incident and take measures to contain it.

Summary

Live Response has become an important part of forensic analysis, because it
allows to gather data that would be lost forever when analyzing the hard disk
image only. By collecting volatile and non-volatile data during this first step
in the Analysis Phase, an investigator can already get a good idea of what
kind of incident he is dealing with. This even allows the development of initial
hypotheses regarding the cause of the incident, which can then be backed up or
refuted by information extraced during the dead analysis steps, starting with
Forensic Duplication.

3.4.2 Forensic Duplication

Goals

In the Forensic Duplication step, exact copies of all storage media that are
involved in the incident are generated, while the original evidence has to stay
unaltered. A chain of custody for all media is started and the original media
are stored in a safe place along with the duplicates. This is done because the
actual data analysis can not be performed on the original media, as it might be
altered or corrupted, making it unacceptable as evidence and possibly voiding
the entire analysis results that are based on it. For the same reason, every
activity during Forensic Duplication has to be precisely documented.
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Methods, Tools and Best Practices

When preparing for a forensic duplication, it is first of all important to prepare
for duplicating a lot of different storage media, which may sometimes require
special hardware. Some examples of possible media to copy are:

• IDE hard drives

• SCSI hard drives

• S-ATA hard drives

• USB or Firewire hard drives

• various types of RAID arrays using any of the hard drive types above

• tape drives

• floppy disks

• storage media such as CDs, DVDs etc.

• CF, SD, MMC etc. memory cards

In addition, hard drives must be removed from their hosts to image them,
so bringing a screwdriver kit and other regular tools is wise. Because of the
large variety of storage media that an investigator might encounter, a proper
toolkit for Forensic Duplication should at least contain:

• extra power cables

• 40-pin/80-pin IDE cables

• 50-pin/68-pin SCSI cables

• SCSI terminators

• a selection of converters (i.e. IDE to Firewire, SCSI to USB etc.)

• hardware write blockers for IDE/SCSI

• large storage hard drives

• documentation material (labels, worksheets, forms)

• blank floppy disks, CDs, DVDs

• boot floppy disks or CD (with trusted OS and tools)

• network hub or switch, network cables
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Doubtless the most common media to image are hard drives, and great
care must be taken to preserve the original data while also creating an exact
duplicate copy. Before starting the actual duplication, a chain of custody should
be initiated for the evidence drives, if this has not already been done. All
evidence has to be properly labeled and catalogued, for examples of appropriate
documentation forms and procedure see e.g. [78]. The evidence drive should
then be copied to a storage drive either by using special forensic duplication
devices, e.g. a handheld device, or by using a forensic workstation with special
duplication tools installed. Regardless of the technique applied, there a several
requirements for any forensic duplication tool, which have been defined by the
Computer Forensics Tool Testing Project of the National Institute of Standards
and Technology (e.g. in [79]). On a relatively high level, these requirements can
be summarized as:

• the tool must create a bit-wise copy (forensic duplicate) of the source

• the tool must not modify the source

• in case of read errors, the tool notifies the user of the error type and
location in the source, and continues imaging

• in case of read errors, the tool uses a documented placeholder (usually
zeros) in the destination in place of the inaccessible data

The first requirement can be quite tricky, because there are ways to ma-
nipulate the way a harddrive behaves so that is appears to be smaller than it
actually is, allowing to hide data in the “invisible” part of the hard drive. A
Host Protected Area (HPA) is an area of a hard drive that is not accessible
by any means because it is hidden at the level of the ATA interface of the
hard drive (see e.g. [64]). Such a HPA can be detected with several tools that
compare the output of certain ATA commands; the Sleuthkit [57] contains the
tool disk_stat to detect a HPA. The only way to access the data stored in
the protected space is to change the ATA configuration of the hard drive itself,
using for example the tool disk_sreset from the Sleuthkit or the freeware tool
TAFT [47]. To prevent any damage to the hard drive and consequential loss
of data, a drive with a HPA should first be imaged normally, then the HPA
should be removed and the hard drive imaged again.

Another way to hide data on a hard drive is by using Device Configuration
Overlay (DCO), which essentially allows to define another disk area that cannot
be accessed by normal means, and a hard disk can contain both a HPA and use
DCO. The only free tool that can remove DCO known to the author is again
TAFT. Before attempting to remove DCO from a hard drive and imaging it,
the disk should first be imaged as described in the case of a HPA.

The requirement of not modifying the source medium can generally not be
fulfilled using only software, therefore using a hardware write blocker is the best
solution. This device is normally placed between the hard disk and the disk
controller on the computer, and it prevents any write accesses to the harddrive.
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Stand-alone solutions for duplicating hard drives often have a write blocker
built-in.

When imaging a hard drive, there are generally two possible methods:

• remove source disk(s) from the affected host and connect to the forensic
workstation

• boot the system containing the source from a live response CD with
trusted tools

The first method should generally be preferred, as it is the easier one. In-
tegrity of the evidence drive can be maintained by using a hardware write
blocker, and then using a forensic duplication tool to image the drive. Sev-
eral commercial toolkits such as EnCase by Guidance Software [19], Forensic
Toolkit (FTK) by AccessData [1] and X-Ways Forensics by X-Ways Software
Technology AG [60] have a built-in capability to create image files, and there
are also a lot of specialized commercial imaging tools. There are also open
source alternatives to the above commercial products, most importantly the
Unix dd tool and variants like dd_rescue [11] or dcfldd [10]. Before imaging a
hard drive, a cryptographic hash (e.g. SHA256) of the evidence drive has to be
computed and stored. Using dd, an image can then be created in the following
manner:

• dd if=source_disk of=image.dd conv=notrunc,noerror,sync

This will create a a file called image.dd which is an exact copy of the
source drive, provided that no read errors occured. If there were read errors,
the inaccessible sectors are filled with zeros in the image file. After the imaging
process is completed, a cryptographic hash of the image file should be computed
and compared to the one computed from the evidence drive earlier, to verify
that an exact copy has been created. Later on this hash value can also be
used to verify the integrity of the image file if needed. In case of read errors
or bad sectors on the hard drive, the comparison may fail because of the zeros
used to fill the gaps in the image. The tool dcfldd allows to compute and store
MD5 hash values of variable sized blocks in a logfile while duplicating the drive,
bypassing this problem:

• dcfldd if=source_disk of=image.dd conv=notrunc,noerror,sync

➥hashwindow=X hashlog=Y

This command computes an MD5 hash for every X byte block within the
evidence drive and stores the list of hash values in a “hashlog” Y. To verify the
integrity of the image file later, the following commands can be used:

• dcfldd if=image.dd of=/dev/null conv=notrunc,noerror,sync

➥hashwindow=X hashlog=Y_2

• diff Y Y_2
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Another way of obtaining an image file of an evidence hard drive is to boot
the system containing the hard drive in question from a boot CD with trusted
tools, and transfering the data on the evidence drive to the forensic workstation
via a network connection. This method is usually used only when the first
method is not an option, e.g. when removing the hard drive is not possible, or
a special piece of hardware to connect to the evidence drive is missing. When
imaging RAID arrays or other logical volumes consisting of multiple hard drives
though, this approach may sometimes be the only way to do the imaging; [64]
is an excellent reference for acquisition of image files in more complex scenarios.
Several pre-compiled Linux boot CDs with installed disk duplication tools are
available, e.g. the KNOPPIX [27] Boot CD/DVD, which contains a lot of useful
analysis and duplication tools. When booting from any boot CD, it should be
made sure, that the evidence hard drive is not automatically mounted by the
operating system, as this might modify its contents. After booting from the
boot CD and connecting the evidence system to the forensic workstation via
network, tools like dd can be used in connection with e.g. netcat to transfer
the data to the forensic workstation:

• forensic workstation: netcat -v -l -p port > image.dd

• live system: dd if=source_disk conv=notrunc,noerror,sync |

➥ netcat forensic_workstation_ip_address port

Correctness of the imaging process should be verified using hash values
exactly like already described above.

After an image file of an evidence drive has been created, the evidence
drive and the drive containing the image file should be stored in a safe place;
further analysis will be conducted on “working copies” of the image file which
are created when needed for analysis. Having duplicated all relevant storage
media, the investigation can then continue with the next steps.

Summary

Forensic Duplication is the first step of a dead forensic analysis of data, and
it provides sound copies of all relevant storage media, that can be used in the
analysis steps to come. Due diligence should be payed to hard drive duplica-
tion, because errors in this stage can discredit an entire investigation and ruin
potential evidence. Because of the large amount of work that Forensic Dupli-
cation can include, it may in some cases be decided to be left out in favor of
easier methods of data acquisition. If an organization just wants to find out
what happened during a particular incident and does not care about the admis-
sibility of potential evidence, performing a true forensic duplication may not be
necessary and simpler methods may be applicable. During a full-scale foren-
sic investigation however, it is mandatory to follow the guidelines summarized
above in order to guarantee integrity of the original evidence and the duplicate
copies.

38



3.4.3 Data Recovery

Goals

Working on the output of the Forensic Duplication step, mostly disk image files,
Data Recovery is concerned with the recovery of data that in the current state
of the image is not available for analysis. This includes recovery of deleted,
damaged, hidden, or otherwise inaccessible data on a file system image, as well
as uncovering data that is hidden otherwise, e.g. in unallocated space. The goal
of Data Recovery is to “throw out a large net”, that means to recover as much
data as possible so that it is available in later stages of the analysis. Part of this
section is based on [64], which is also a major reference for forensic file system
analysis.

Methods, Tools and Best Practices

When a disk image has been acquired, there a usually multiple locations where
data may have been hidden from the user’s view. This description will focus
on use of the open source Sleuthkit tools to recover data: commercial products
like EnCase, FTK and X-Ways offer similar functionality and will often even
recover deleted or hidden files automatically.

There a several tools in the Sleuthkit that aid in the analysis of a disk
image by retrieving various parameter concerning partitions and file systems.
The mmls tool works on a raw disk image (obtained by using dd on the evidence
drive), and extracts information about the partitions on the hard drive. Typical
usage of mmls may look like this:

• mmls image.dd

• Output:

Slot Start End Length Description

00: ----- 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000001 0000000031 0000000031 Unallocated

02: 00:00 0000000032 0000062591 0000062560 DOS FAT16 (0x04)

This output states that there is one primary partition table with a single
FAT 16 partitition, which spans from sector 32 to the end of the harddrive for
a total of 62560 sectors; the 31 unallocated sectors in between are left blank
because of alignment reason. Data could be hidden in these sectors, so an
investigator should check if there is any data contained in them. In other cases,
there may be more space unallocated to a partition, either between partitions
or after the end of the last partition on the disk. A common way to hide
data is to create an extra partition, store some data on it and then delete the
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partition. This will make the partition inaccessible with normal means from
the operating system, but the data stored in the deleted partition will not be
deleted and remains hidden. Unallocated disk space should thus be examined
closely for hidden data.

Another way of hiding data outside of the actual file system is by using the
volume slack of a partition to store data. The volume slack consists of the disk
space between the end of a file system and the end of the partition in which the
filesystem resides. To find out the size of a file system in a partition, the tool
fsstat from the Sleuthkit can be used:

• fsstat -f fat -o 32 image.dd

• Output (truncated):
FILE SYSTEM INFORMATION

-----------------------------------------

[...]

File System Layout (in sectors)

Total Range: 0 - 62559

* Reserved: 0 - 0

** Boot Sector: 0

* FAT 0: 1 - 61

* FAT 1: 62 - 122

* Data Area: 123 - 62559

** Root Directory: 123 - 154

** Cluster Area: 155 - 62558

** Non-clustered: 62559 - 62559

[...]

As it can be seen in the output. fsstat reports the number of sectors that
belong to the file system as 62560, because the total range is 0-62559. Since
this is equal to the size of the partition the file system resides, no volume slack
exists. If there is a difference between the two values, the volume slack space
should be searched for hidden data.

Apart from the above methods of recovering data outside of the file system,
there are also several ways to recover data inside it. The most obvious task is to
recover deleted files, and there a number of free tools that allow achieve this. In
the Sleuthkit, the tools fls and icat allow recovery of deleted files. While fls

lists all file and directory names along with their inode (or similar metadata
structure) number in a raw partition image, including those of deleted files
and directories, icat allows to extract the contents of a file by inode number.
Typical output of fls, in this case used on an image of an SD card used in a
digital camera, looks like this:

• fls -r image.dd

• Output (truncated):
d/d 3: DCIM
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+ d/d 517: 11160606

++ r/r 1029: PICT0418.JPG

++ r/r * 1030: _ICT0434.JPG

++ r/r 1032: .DS_Store

[...]

This output shows that there is a deleted file with inode number 1030, called
_ICT0434.JPG; the first letter was replaced by an underscore when the file was
deleted, since this is a FAT file system. To recover the deleted file, the icat

command can be used is the following way:

• icat image.dd 1030 > _ICT0434.JPG

This will create a file _ICT0434.JPG containing the data extracted from the
partition image for inode 1030. It must be noted though, that this kind of
recovery will not always successfully recover deleted files. For instance, when
a file is deleted, the data blocks containing the file content will be marked as
unallocated, i.e. free, by the operating system. Whenever a new file is created,
these data blocks could easily be reallocated and overwritten with different data.
Once that happens, the file contents are permanently lost. In other cases, the
file contents might be too scattered around the file system for easy recovery,
or the inode information concerning the data blocks allocated to a file might
be corrupted. Because recovering single files using the above method is very
time-consuming, it is better to use the HTML interface to the Sleuthkit tools,
Autopsy [2]. In addition to automating the usage of the Sleuthkit tools, it also
offers various case management capabilities and reporting functions that make
documentation easier.

Another method to recover deleted file contents involves the tools unrm and
lazarus from The Coroner’s Toolkit (TCT) [51]. Using unrm, the unallocated
blocks in a file system, which is where deleted file contents may have survived
deletion of the file, are extracted and stored in a file. Then lazarus is used on
the output file, employing several methods to organize the unstructured data
returned by urnm into meaningful files, that can then be reviewed by the inves-
tigator. The authors of lazarus described its full functionality in the appendix
to [68], an detailed example of the rather complex usage of the two tools can
be found in [80], “Hack 58”.

When file recovery using the method described above does not succeed, the
technique of data carving may be more successful. Data carving involves using
heuristics to recover the content of files that would otherwise not be recoverable.
For the FAT file system, the tool fatback [13] can be used to recover a lot of
files that would otherwise be lost. Using fatback on the partition image creates
an interactive prompt, which can then be used to copy deleted files from the
image to separate files:

• fatback SD_CARD.dd

No audit log specified, using "./fatback.log"
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Parsing file system.

\ (Done)

fatback> ls

Sun Feb 13 16:32:50 2006 0 DCIM/

Sun Mar 14 19:42:48 2006 0 TRASHE~1/ .Trashes

Sun Jun 6 19:41:22 2006 6148 DS .DS_Store

In order to recover the same file that was recovered using fls and icat

before, the respective file has to be located and then copied to a separate file
outside the image. Deleted files’ names start with a ? when using fatback, so
recovering the file is done like this:

• fatback> cd DCIM

fatback> cd 11160606

fatback> cp ?ICT0434.JPG .

Extracting cluster chain 244 to file ./?ICT0434.JPG

"./?ICT0434.JPG": Unable to recover file entirely, carving instead.

If necessary, fatback will use data carving techniques to recover deleted
files, which will be logged in the audit file fatback.log. Another tool to
recover files using data carving is foremost [14], which uses file signatures for
file recovery. A signature file that contains headers and footers of known file
types is used to carve data based on this information, often allowing recovery
of partially corrupted files or files which are not referenced by any inode data
structure but are just present in unallocated space. Usage of foremost is pretty
straightforward, as it comes with a sample configuration file containing file
signatures for most common file types.

• foremost image.dd

will create a new folder named foremost-output, that contains a large
number of files; usually there will be several unusable files, in cases where
foremost tried to recover files based on their signatures but did not succeed.
Generally the rate of success is comparable to that of fatback, with the added
benefit that foremost can work on file systems other than FAT too.
Commercial forensic software packages often use techniques similar to that of
the open source tools, but that cannot be said with certainty because their
file recovery source code is not publicly available. An interesting fact is, that
sometimes the commercial tools will be able to recover certain files that the
open source alternatives are not able to recover, and vice versa [75]. Therefore
it is advisable to use different tools in combination to be able to recover as
many files as possible.

Apart from deleted files, there may also be chunks of data hidden in file
slack space. Since space on hard disks is allocated only in multiples of the
block size, e.g. 512 byte, and some files may not occupy an exact multiple of
the block size, there is usually a little bit of space wasted in the last block oc-
cupied by a file. This slack space could be used to hide data, although it is very
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fragile and could be easily overwritten. The tool dls from the Sleuthkit can
extract all file slack space into a file, which can then be analyzed. Commercial
forensic toolkits routinely examine slack space and will reconstruct hidden data
if possible. In a very thourough investigation, slack space should be examined
closely for hidden data.

Apart from these rather obvious ways to hide data, there are also a number
of very obscure places where a skilled attacker could hide data (again [64] is the
landmark work to refer to), e.g.:

• in unallocated clusters following the partition map

• in unused fields in partition entry structure/disk label structure

• in altered partition type fields

• additional data on individual disks in RAID volumes which does not be-
long to the RAID volume

• data units manually added to the list of bad data units in a file system

• alternate data streams on NTFS systems

There are even more clever ways to hide data, see for example [77] or [72].
Only a very skilled investigator who devotes a lot of time will be able to detect
this level of data hiding techniques, which are sometimes even called “Anti-
Forensics”. Recovering data hidden in this way will mostly consist of manually
scrutinizing the data with only a few low-level tools like dd and a hex editor,
or custom-made experimental tools. If the suspected attacker skill level is esti-
mated to be extremely high, or if the data that might be hidden is of extreme
value, looking for hidden data should be expanded to the obscure locations
mentioned above and in the cited material.

Summary

Data Recovery is an important step in any incident analysis, because it provides
a basis for all successive step to come. If a file or piece of information has not
been recovered during Data Recovery, the chances that it will become a part of
the analysis are small, and even if it is discovered later this could complicate
the whole process as previous analysis results might have to be reevaluated.
Thus in a full-scale forensic analysis, considerable effort should be put into
Data Recovery and the documentation of all activities involved. If the response
strategy adopted is exclusively aimed at recovery of deleted data, the methods
metioned above to find hidden data can be skipped. In general, the higher
the attacker threat level is estimated, the more likely it is that advanced data
hiding techniques have been used to hide data or cover the tracks of a crime; in
such a case even the more obscure ways of data hiding should be investigated.
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3.4.4 Harvesting

Goals

During Harvesting, the investigator begins to gather metadata (data about
data) about the preserved material which is the output of the Data Recovery
step. This allows to structure the largely unorganized material based on certain
criteria, typically file timestamps, permissions and other file attributes, and the
file type. This structure will help during the rest of the analysis, because often
sets of data with certain properties “seem or are known to be related to the
major facts of the case or incident known to this point in the investigation”
[66].

Methods, Tools and Best Practices

There are several different classes of metadata that can be harvested from the
recovered data. One of the most important classes are file attributes, namely:

• file name and size

• modification, access, change (MAC) times

• user/group ownership

• permissions

• inode number

The Perl script getmetadata.pl (sourcecode listed in Appendix A.1) that
is included in [75] can be used to collect all of the above mentioned metadata
for all files in a partition image, and it will in addition also compute an MD5
hash value for each file. Before being able to use it, a specially formated fls

output file has to be created first using:

• fls -r -p -l -m / -f file_system_type partition_image >

➥ part_fls.txt

This command will produce an output file called part_fls.txt which con-
tains various metadata for each file in a partition image in a format such as in
this example output:

• 0|/DCIM/11160606/PICT0418.JPG|0|1029|33279|-/-rwxrwxrwx|1|0|0|0|

➥ 762344|1149544800|1149615232|1149615232|512|0

0|/DCIM/11160606/_ICT0434.JPG (deleted)|0|1033|33279|-/-rwxrwxrwx|0|0|0|0|

➥ 831346|0|1149615560|1149615560|512|0

The getmetadata.pl script will then make use of this file to extract the
metadata, compute the hash values and display the whole information in a
human-readable format
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• ./getmetadata.pl part_fls.txt file_system_type partition_image >

➥ metadata.txt

Metadata is displayed in the output file in the following format:

• MD5|Filename|Inode|Mode|ModeString|User|Group|Size|ATime|ADate|MTime|

➥ MDate|CTime|CDate

50a87c5fe2ce7bae9a8613e27917f696|/DCIM/11160606/PICT0418.JPG|1029|

➥ 33279|-/-rwxrwxrwx|0|0|762344|00:00:00|06-06-2006|19:33:52|06-06-2006|

19:33:52|06-06-2006

c4479a3e1fb1f1b6dbc1f7f8d8c6cdaa|/DCIM/11160606/_ICT0434.JPG (deleted)|1033|

➥ 33279|-/-rwxrwxrwx|0|0|831346|01:00:00|01-01-1970|19:39:20|06-06-2006|

19:39:20|06-06-2006

This collection of metadata can then be used in further analysis, e.g. by
importing it into a spreadsheet program and grouping files according to user
and group ownership. Hash values are also used in the next step of Reduction
and Organization to reduce the number of files that have to be analyzed.

To group files according to file type a very similar script can be used, that
uses the output file of getmetadata.pl. Using the Unix tool file, the script
getsignatures.pl (listed in Appendix A.2) checks for known file signatures
and outputs the file type after the already extracted metadata:

• ./getsignatures metadata.txt file_system_type

➥ partition_image > sigmeta.txt

• Output:
50a87c5fe2ce7bae9a8613e27917f696|/DCIM/11160606/PICT0418.JPG|1029|

➥ 33279|-/-rwxrwxrwx|0|0|762344|00:00:00|06-06-2006|19:33:52|06-06-2006|

➥ 19:33:52|06-06-2006|JPEG image data, EXIF standard 0.73, 10752 x 2048

c4479a3e1fb1f1b6dbc1f7f8d8c6cdaa|/DCIM/11160606/_ICT0434.JPG (deleted)|1033|

➥ 33279|-/-rwxrwxrwx|0|0|831346|01:00:00|01-01-1970|19:39:20|06-06-2006|

➥ 19:39:20|06-06-2006|JPEG image data, EXIF standard 0.73, 10752 x 2048

The file type information can then be used to group files of a certain type or
class, e.g. when investigating a case of suspected distribution of child pornog-
raphy one would focus on image and video files, whereas in case a computer
intrusion with a suspected rootkit installation the investigator would rather
focus on executables or driver files.

All the task described above can also be performed using the commercial
forensic toolkits EnCase and FTK, typically the metadata is even displayed by
default and multiple ways to evaluate them are available. At the end of this
step, organized sets of digital data grouped by metadata information have been
formed and ease the further analysis.
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Summary

By collecting metadata during Harvesting the large and unstructured body of
data that was the output of the Recovery step can be organized to make it more
useful for the following analysis. In this step, the actual details of the case are
for the first time really incorporated in the Analysis Phase, since the type of
metadata used and the way in which the data are grouped with respect to it
can be adjusted to the specific case. For some response strategies, Harvesting
may be left out because only the content of the data and not the metadata are
important for the analysis. A full-scale forensic anlysis should always include a
Harvesting step, since metadata information – in particular MAC timestamps
– are often the best way to reconstruct a series of events in an incident. The
computing of hash values can also be used in the Reduction and Organization
step that follows to eliminate irrelevant data, which is crucial in a thourough
investigation that typically produces a lot of raw data in the Recovery and
Harvesting steps.

3.4.5 Reduction and Organization

Goals

During Reduction and Organization all data that can be identified as irrelevant
to the case is eliminated, and the remaining data is organized to alleviate access
to the data later. The goal is to reduce the large set of structured data that
was the output of the previous step to “the smallest set of digital information
that has the highest potential for containing data or probative value” [66], and
then to organize the data to allow efficient search, identification and reference
to relevant data in the Analysis step and the whole Post-Analysis Phase.

Methods, Tools and Best Practices

To reduce the amount of data, the most widespread way is to eliminate known
good files by comparing MD5 or other cryptographic checksums of the data
in question with MD5 checksums of known files recorded in a database. For
instance, there are hundreds of files in a standard Windows installation which
are the same for every installation, and if they are unaltered, they can be safely
disregarded in the further analysis. Cryphographic checksums like MD5, SHA1
or the newer SHA256 can be used to detect any difference in the contents of
those files, because a matching checksum represents an overwhelming possibility
that the file is unmodified, i.e. that it can be eliminated.

There are several different large collections of precomputed hash values for
known files, e.g.:

• The National Software Reference Library [54] by the NIST

• Maresware Hash Set CD [28] (commercial)

• Hashkeeper Group [20]

• KnownGoods Database [53]
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• Dan Farmer’s FUCK baseline collection (discontinued, but available via
archive.org [7])

• Solaris Fingerprint Database [40]

It is important to keep in mind, that these hash databases contain hash
values of known files, not necessarily of known good files only. They can not
be used to simply eliminate any matching file from further analysis, but rather
to identify files and then choose whether they can be safely eliminated. There
are also hash sets of known child pornography images, in a way “known bad”
files, that can be used to scan through large image sets that were formed in the
preceding steps.

In either case, an investigator will probably assemble and use a database
suitable for the actual case using these available resources and perhaps even
creating a custom hash set. If a hash set containing only hashes of known good
files is available, the script unknowns.pl (listed in Appendix A.3) can be used
to extract the names of all files whose MD5 checksum does not equal that of a
known file. To use the script, the hash set MDHashDatabase.txt has to contain
only the hash values, each on a single line and sorted alphabetically; it also uses
the metadata.txt file that was created in the Harvesting step:

• ./unknowns.pl metadata.txt MD5HashDatabase.txt > unknowns.txt

This will filter the metadata file by eliminating all files whose MD5 checksum
matches one that is contained in the hash database file. To make sure that
no unknown file is eliminated by chance, the list of files to be excluded should
always be manually reviewed, to avoid accidentally eliminating important data.

Using the commercial EnCase and FTK, precompiled hash databases such
as the NSRL can be easily imported and used to filter the data in a forensic
image. They also include functionality to build new hash sets from scratch,
for example by importing complete sample installations of different operating
systems and then computing and storing the hash values in a central database.

After having reduced the data to a set that is believed to hold the highest
potential for evidence, it is a good idea to organize the data in preparation for
the actual analysis later on. This can mean that extracted files are physically
group by putting certain types of files into distinct folders, e.g. folders named
“images”, “executables”, “logfiles” and so on. Another way to group data is by
tagging it, which means that different pieces of data can be labeled with one
or more attributes out of a set of predefined keywords (tags). If the amount
of data under review is very large, one might even use a database approach to
manage the data, in order to allow quick retrieval and identification and make it
easier to reference these data in the Post-Analysis Phase. For the same reasons,
a searchable index for the data is often built to allow an efficient review of the
data.
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Summary

In the Reduction and Organization step, the final preparations for the Analysis
step are made, by reducing the amount of data that has to be analyzed in detail
and by organizing the data in meaningful ways to facilitate efficient analysis.
The Reduction part will most likely be part of every investigation, since in
most cases of computer security incidents, most of the data involved can be
safely disregarded and thus all resources can be focussed on analyzing the really
important pieces of data. Nevertheless, attention has to be payed that no vital
data is eliminated by accidentally excluding it. Organizing the data after having
reduced them is also a task that will be done in most investigation, sometimes
even implicitly because investigators tend to organize data already as they
recover, harvest or reduce it. In a full-scale forensic investigation it is even
more important to use sound means of grouping and retrieving the data; in the
Post-Analysis Phase, referencing the data in a report or testimony is a major
part of justifying and substantiating the findings of the investigator and his
interpretation of the case.

3.4.6 Analysis

Goals

After having recovered, harvested, reduced and organized the data related to
an incident in the previous steps of the Analysis Phase, the actual reasoned
analysis start in the Analysis step. An investigator develops a detailed re-
construction of the events that comprise the incident and tries to answer the
questions of what happened, when and how did it happen, and who is responsi-
ble. During an investigation of suspected criminal activity, the perpetrator has
to be identified, along with determining the means, motivation and opportu-
nity. By reviewing the actual contents of the data, different pieces of evidence
are correlated to establish links between them. By carefully documenting the
activities and validating the results, this results in a thorough reconstruction of
the incident based on objectivity and scientific principles.

Methods, Tools and Best Practices

There is a wide variety of possible ways to achieve the goal of event recon-
struction, because every investigation has his own special properties and tech-
nicalities that influence the analysis. To guarantee an objective analysis and
interpretation of the results, the scientific method has to be applied, that means
an investigator should test multiple theories regarding an incident and try to
disprove them, instead of trying to verify them. By eliminating theories that
conflict with intermediate results, a remaining theory has a high possibility to
represent a correct reconstruction of the events.

Another very important property of analysis results is that they are re-
peatable, meaning that any observer could make the same observations as the
investigator using the same methods. To allow a smooth and accurate Post-
Analysis Phase, every action taken, technique applied or tools used should be
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documented precisely and immediately, along with its results and impact on
the considered theories.

For these reasons, rather than trying to list all the available tools and Best
Practices for analysis, it is better to consider some basic techniques that should
be used to achieve repeatabiliy and objectivity of the analysis [66]; some exam-
ples of actual Best Practices and tools will be given afterwards:

• Assessment of content and context of digital data objects

• Experimentation with new or unusual techniques

• Fusion of different pieces of evidence to form a conclusive argument; also
Fusion can mean incorporating evidence from sources other than the dig-
ital evidence

• Correlation of related evidence to establish cause-and-effect relationships
between certain pieces of evidence and events

• Validation of the findings to produce reliable and repeatable results

An example of Assessment of digital evidence are string searches, that are
routinely used to search digital data sets for certain keywords. Open source
tools like strings and grep can be easily used to search for keywords in a
complete disk image or in a group of files. Attention has to be payed to com-
pressed and encrypted files, as strings included in them can normally not be
searched for; in these cases, decompressing and decrypting these files has to be
performed before they can be searched for occurences of the keywords. Using
the HTML graphics interface Autopsy for the Sleuthkit, keyword searches and
regular expression searches can be conducted quickly with the added opportu-
nity to look for strings in unallocated space too. Commercial forensic toolkits
usually offer the same features.

The analysis of unknown binary files, i.e. executables, is an area in which
often new or untested methods are used and experimentation is necessary to
uncover the purpose of the unknown files. Generally speaking there are two
approaches to analyzing binary files, static and dynamic analysis. In static
analysis, the binary is only analyzed while it is not running, e.g. using a disas-
sembler and an number of assorted Unix tools. Dynamic analysis incorporates
running the program in a controlled environment and often involves using a de-
bugger to single-step through the instructions of a binary file, inspect memory
registers and alter the program flow to discover an unknown binary’s purpose.
To get an idea of the amount of work and experimentation that may be involved
in the art of reverse engineering a binary file, see for example the Honeynet Scan
of the Month Challenges 32 [21] and 33 [22].

Fusion is often used to bring together network-based evidence with host-
based evidence and find conclusive explanations of the events that comprise
the incident. Usually the Unix tool tcpdump is used to capture network traffic
and store it in a capture file. There are four different classes of network-based
evidence that can be collected and analyzed [61]:
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• full-content data

– all network data is captured

– everything that traveled the network can be reconstructed, e.g. with
tcpflow [49]

• session data

– analyze TCP sessions (incoming/outgoing ports, amount of data
transferred), e.g. using tcptrace [50]

– correlate sessions to identify an attacker’s behaviour

• statistical data (e.g. using tcpdstat [48])

– count number of unique TCP flows or number of observed IP adresses

– break down traffic into the different protocols

• alert data

– use an IDS to check traffic online or run it on capture files offline,
e.g. with snort [39]

– check alert message explanations and note possible security breaches
for later analysis

Apart from these automated tools, detailed analysis of captured network
data is often done using Ethereal/Wireshark [59].

Putting together the network-based evidence with the host-based evidence
produced during the analysis, it is often possible to reconstruct events that
could not have been explained with one type of evidence alone. Often, an
activity timeline is constructed to represent the incident in a chronological way,
especially in case of computer intrusions, where there is usually network-based
evidence for the intrusion and host-based evidence for the changes made to the
attacked hosts. Another possible way to fuse evidence is combining physical
with digital evidence, consider e.g. a piece of paper found at the desk of a
suspected attacker with passwords written by hand on it, which can then be
used to decrypt encrypted files in a disk image.

Fusion is closely related to Correlation, but correlating evidence means more
than putting events in a chronological context — it means that cause and effect
of different events are investigated to establish a causal relationship. In the
example above, consider that a forensic document examiner can prove that the
suspect wrote the passwords on the piece of paper himself; this would mean
that he most likely knew about the encrypted files and had access to them.
Correlating with additional evidence might then make it possible to prove that
the suspect encrypted the files himself, perhaps even created them and so on.

The examples above represent only a small selection of tools and Best Prac-
tices that are commonly used in the Analysis step, other topics that have not
been mentioned are reconstructing web browsing or e-mail activity, dealing
with proprietary formats of data, forensics of PDAs etc. There is basically no
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limit of what can be done in the Analysis step, as long as the guiding princi-
ples described above are respected, and the investigator maintains an objective
standpoint throughout the whole process.

With respect to the individual tools and methods used during the Analysis,
requirements for admissibility, i.e. the validity of evidence in a court of law,
depend on the local legislation. As a guideline, the so-called Daubert Standard
for the admissibility of scientific evidence should be consulted; the Daubert
Standard was introduced by a U.S. Supreme Court of Justice ruling in the
case Daubert vs. Merrell Dow Pharmaceuticals, Inc. [9] and describes a set
of requirements for scientific evidence to be admitted in court. Among other
requirements it demands that a tool or technique has been subject to peer
review and publication, that the error rate is known and that the technique
is generally accepted by the relevant scientific community. For this reason
established and well-known tools and techniques should be prefered in any case,
and if previously unknown and untested methods have to be used, due diligence
should be payed to documentation and justification of the technique in order
to achieve credibility.

Summary

During the Analysis step the actual reasoned scrutiny of all evidence collected
and prepared so far takes place. Using the scientific method and accepted
methods like correlation, fusion and validation, valid and admissible evidence is
produced that reconstructs the events that make up the computer security inci-
dent. The Analysis step will usually be part of any investigation of a computer
security incident. In case of a full-scale forensic analysis, all of the above princi-
ples and requirements have to be fulfilled to achieve admissibility of the analysis
results. A more relaxed investigation may borrow from the techniques, but does
not have to be that strict in its interpretation of for example the Daubert Stan-
dard. Regardless of the scope and type of the investigation though, objectivity
should be maintained through the whole process, and proper documentation
has to be performed to achieve credibility of the results and ease the activities
perform in the Post-Analysis Phase.

3.5 Post-Analysis Phase

The Post-Analysis Phase (figure 6) starts when all activities regarding the col-
lection and analysis of digital evidence have ended, and the objectives set by
the response strategy for the Analysis Phase have been fulfilled. The remain-
ing tasks concern producing a report which documents the whole investigative
process, and taking measures to resolve the underlying issues of the incident
that was investigated. This can mean that a forensic examiner has to testify
in court about his work on the incident; in these cases, proper preparation to
withstand cross-examination from an oppposite legal party is necessary.
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Post-Analysis Phase

Report Resolution

Analysis Phase

....

Figure 6: Post-Analysis Phase of the Common Model

3.5.1 Report

Goals

The Report step deals with writing a precise report that describes the details of
an incident, is understandable to non-technical readers or executives and meets
the legal standard for admissibility in court. It contains all of the documentation
material that (hopefully) was produced during the Pre-Analysis and Analysis
Phase respectively, and assembles the different pieces into a comprehensive
overview of the whole case, while pointing out the most important analysis
results and implications for resolution of the incident.

Methods, Tools and Best Practices

If documentation of the previous steps has been done in a proper way, then the
Report step consists mainly of summarizing the already documented activities
in a clear and concise report. Before the actual investigative procedures are
described, a computer forensic report should give a short “Executive summary”
of the incident. This summary should include a list of all the people involved
in the incident, a list of the most significant results of the investigation and
recommendations for resolution of the incident.

The report should then proceed to describe the course of the investigation,
starting with the Detection of the Incident step, i.e. at the very beginning
of the whole process. The reasons for starting an investigation and whether
to conduct a full-scale forensic investigation should be clearly stated, and the
Response Strategy should be included. After that a summary of the steps in
the Analysis Phase is given, e.g. which steps were taken and which tools or
methods were used for a specific task. Original documentation, sourcecode of
any scripts used or lenghty output of commands should be put into attachments
or appendices, so that the flow of the report does not get interrupted easily.
It is a good idea to include any piece of data that had any influence on the
conclusions drawn during the investigation, because it makes the report self-
contained and more credible.

When presenting the results of the analysis, great care should be exercised
to explain how the results were achieved, what other possible theories were
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investigated and why the analysis ultimately ended with the conclusions docu-
mented in the report. In this step, an investigator should point out where he
used scientific reasoning based on correlation, fusion and how he validated his
findings, in order to show that the results are reliable. All this should be writ-
ten in a clear and intelligible style, so that not only forensic experts, but also
management executives or legal personnel can comprehend the implications of
the results and use them in a sensible way. The same applies if the forensic
analyst is summoned as an expert witness in a lawsuit.

Summary

In every investigation, regardless of its scope or the amount of resources put into
it, a written report should be created that documents the entire investigation
and its results. Such a report not only enables an organization to initiate
the appropriate measures to resolve the incident in the Resolution phase, it
also helps to avoid similar problems in the future and to optimize the Incident
Response procedures themselves.

Writing a good forensic report is one of the most difficult tasks of the whole
investigative process — on one hand it has to contain all the technical evidence
and scientific reasoning to support its results, on the other hand it is most of
the time not directed at technical experts and thus has to convey its results
in an easily understandable manner. If an examiner is asked to testify about
the investigation in a court of law, he should prepare properly to defend his
analysis methods and the results, which can be difficult when being attacked
by an opposing legal party in cross-examination.

By promoting accurate and proper documentation throughout the whole
process of investigation, documenting immediately and in a well-defined way,
some of these difficulties can be avoided. If documentation of the previous steps
is not sufficient then writing an accurate report can become near impossible,
jeopardizing the credibility of the whole analysis and possibly ruining all the
work put into the investigation. For the same reasons, an expert witness’s credi-
bility can crumble if an opposing party can raise questions about an examiner’s
methods and diligence, which could lead to exclusion of the analysis results
from the trial.

3.5.2 Resolution

Goals

The goal of Resolution is to contain the problem that caused the incident,
solve it and take appropriate measures to keep it from occurring again in the
future. In case of an ongoing incident, these measures may also be taken prior
to conclusion of the analysis, but if possible they should only be put in place
after all potential evidence has been secured for further analysis, because the
evidence will generally be altered by the implemented security measures. To
verify that the chosen security mechanism have been integrated successfully
and that they are effective, the implementation should be supervised and the
effectiveness of the measures should be validated in the future.
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Methods, Tools and Best Practices

Usually the methods used to resolve an incident are well-known host- and
network-based security measures that are adjusted to the specific situation. If
it turns out that a computer was infected with an internet worm then removing
the worm completely and then applying patches for the exploited vulnerabilities
will solve the problem. In case of a massive Distributed Denial of Service attack
on a company’s webserver, then reconfiguring the network ingress routers may
resolve the situation, depending on the type of DDoS attack.

Whatever steps are taken to resolve the incident, every step should keep the
top priorities of the affected organization in mind, e.g. whether quick recovery
to normal business operations is most important, or if a thorough investigation
is desired. After having identified the cause of the incident and the underlying
problems, suitable security measures should be determined, according to the
priorities mentioned above. These host- and network-based security mechanism
should then be implemented as soon as possible, but without risking the loss
of valuable information or evidence. To make sure that all measures work
as intended, their effectiveness should be validated and documented. After
having resolved the individual incident completely, it may be necessary to adjust
policies or incident handling procedures, if the investigation of the incident
revealed a flaw in the current methodology. This “Lessons Learned” effect is
crucial to improve the incident handling process and use experience from past
cases to prepare better for possible incident to arise.

Summary

The Resolution step deals with the resoluting of the incident and the elimination
of the underlying problems that caused it. Although it is listed as the last step
in the Common Model, steps to resolve or contain an incident may actually be
taken very early into an investigation, generally to avoid harm by an ongoing
incident. Whenever possible, this should only be done after all relevant data
have been collected in an unmodified state. If it is absolutely necessary, affected
systems can then be isolated from the network, switched off or in maybe repaired
without losing too much information regarding the incident. A Resolution step
will be part of any investigation that resulted in identification of one or more
security issues that should be addressed, even if the analysis itself did not
obey to forensic standards. As mentioned before, sometimes the focus simply
lies on solving the problem at hand rather than accurately reconstructing and
investigating an incident to produce admissible evidence. In either case, a
“Lessons Learned” effect can give valuable clues to improve overall security
and incident response procedures.

3.6 Discussion

The Common Model for Incident Response and Computer Forensics offers a
way to conduct proper Incident Response while applying principles known from
Computer Forensics during the actual analysis phase. In this way it addresses
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the shortcomings of both seperate models, effectively integrating a forensic anal-
ysis into an Incident Response framework. This model makes use of the man-
agement procedures developed in Incident Response process models [78], which
mainly concern the Pre-Analysis and Post-Analysis phases. Typically these
measure like Pre-Incident Preparation and Incident Detection are not included
in traditional investigative models, since those tend to approach the problem
from a law enforcement’s point of view.

On the other hand, the Incident Response process model introduced in chap-
ter 2 only describes the Analysis Phase rather loosely, basically leaving it up
to an investigator which steps to take and how to conduct the analysis. But
in many cases, an incident investigation requires a much more thorough and
structured type of investigation, because the possible outcome might include le-
gal or administrative action, or the potential damage to the organization under
attack is so high, that they want to find out exactly what caused the incident
to prevent similar incidents in the future. In these cases, a well-defined and
accepted process model like the Investigative Process model [66] offers an ideal
way to conduct an investigation that satisfies forensic standards and will be
able to yield admissible evidence of high reliability. For this reason the Com-
mon Model’s Analysis phase consists of the classical investigative steps which
comprise a full-scale forensic analysis, and it also includes Live Response as
another method of data collection which has proven to be inevitable in modern
incident investigations.

Since a full-scale forensic analysis is not required or adequate in every single
incident, the Common Model uses a number of factors related to the particular
incident to decide whether such a full-scale forensic analysis should be afforded.
There are two “hard” factors, which can influence this decision independently
of everything else: legal constraints and an organization’s Response Posture. It
has been described how both can make an analysis that complies with forensic
standards mandatory. On top of that there are two “soft factors”, the estimated
Attacker Threat Level and the Potential Damage of the incident. If the abstract
equation

AttackerThreatLevel × PotentialDamage > Threshold

becomes true, then a full-scale is justified and should be seriously considered.
This equation has been introduced only to illustrate the decision process, reality
the “Threshold” value or the Attacker Threat Level can hardly be displayed as
absolute values.

Nevertheless this equation is related to the well-known Risk Equation which
is often used to define risk [55]:

Risk = Threat× V ulnerability × Cost

The Threat value corresponds approximately to the Attacker Threat Level and
the Cost value corresponds to Potential Damage. Vulnerability normally de-
notes the likelyhood that a particular attacks succeeds, which in the case of
Incident Response has in fact already happened; therefore this factor could be
set equal to 1, and the two equations would draw even nearer to each other.
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In this sense, the value that determines whether a full-scale forensic analysis is
necessary equals Risk under the condition that a vulnerability has already been
exploited.

To show which techniques are commonly applied in each step of the Common
Model, examples of methods, tools and Best Practices have been given. This
can of course not be an exhaustive listings of all available tools and methods, but
rather it shows which techniques and tools are currently relied upon to automate
certain tasks and which are generally accepted in the forensic community.

3.7 Summary

This chapter introduced the Common Model for Incident Response and Com-
puter Forensics which is a new way of conducting Incident Response, with focus
on complying with scientific forensic principles in the Analysis Phase. Each
step’s significance within the whole process has been discussed, and commonly
used tools as well as tried and accepted Best Practices have been introduced
for each step. The model has been designed to flexibly include a the full-scale
forensic analysis, and a method for determining in which cases this is adequate
has been proposed. It was shown that the Common Model’s way of assessing
the need for forensic analysis is comparable to measures of risk in Risk Manage-
ment. In the next chapter, the step of Live Response, which was previously left
out of the description of the Common Model, will be described in great detail.
This will aim at establishing Live Response as an inevitable part of forensic
analysis. On top of that it will be shown that current Live Response practices
may be flawed and it will be shown how they can be improved to make the Live
Response process more accurate and reliable.
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Chapter 4

Live Response

4.1 Introduction

When investigating an incident or computer crime, classical Computer Forensics
would usually start with pulling the plug of all computer systems involved, and
then creating forensic duplications of all hard drives in the respective systems.
This kind of analysis is commonly called “dead” analysis. In recent years, this
principle has been reconsidered, and methods of data collection on systems
that are still running have become popular. In contrast to dead analysis, this
is called “live” analysis, and all activities concerning data collection on live
systems are summarized under the term Live Response.

4.1.1 Motivation

The reason why Live Response has become an important part of forensic analy-
sis is that when powering down a computer system, a lot of volatile information
is lost, because the RAM is cleared. This information will not be available for
further analysis, although it may contain valuable clues regarding the incident,
and there is sometimes no other way to obtain it other than collecting it on
the running system. Volatile information that can be collected during Live
Response includes:

• system date and time

• list of current network connections and open TCP/UDP ports

• running processes

• loaded kernel modules

• open files

Especially the information regarding network connections and ports, and
running processes can be crucial information that allows to figure out what
caused an incident or how a system was compromised.

In addition to the collection of volatile data, it has also become common to
collect certain non-volatile data too, i.e. data that could also be recovered in
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dead analysis. Sometimes this is done out of convenience, e.g. because certain
logfiles can easily be recovered from a running system with special commands,
but in a dead analysis the investigator would have to parse the logfile format
with large effort. In some cases file formats are even proprietary so no publicly
available parsers do exist, yet it is very easy to recover the files on a running
system with the right tools.

Another reason for collecting non-volatile data is that this information will
already be available in a very early stage of an analysis and can improve contain-
ment of the incident. With the amount of data that can already be recovered
during Live Response, performing a forensic duplication can become redundant,
because enough information to explain and resolve the incident is already there.
On the other hand, if Live Response yields unexplainable results or raises fur-
ther suspicions, the decision to perform a forensic duplication and thorough
dead analysis is strengthened.

4.1.2 Live Response considerations

A severe problem with Live Response techniques is that they will generally alter
the running system’s state, which contradicts the general paradigm of forensics
to never modify potential evidence. Issuing commands on an evidence system
will change that system’s RAM contents, create processes, and even the hard
drive may be modified, e.g. by unnoticed creation of cache files by the operating
system. On top of that, software on a possibly compromised host can not be
trusted, since it may have been manipulated to return false output, crash the
operating system, or worse.

In order to be able to conduct effective Live Response anyway, special tech-
niques are used to modify the system under investigation as little as possible
while still collecting accurate information from the host. If the changes that the
use of a Live Response tool will make to the target system are well understood
and documented, its use can be admitted even if it alters evidence slightly. This
tradeoff is justified by the fact, that the information gained by conducting Live
Response is often so valuable, that a small and controlled modification of the
evidence is negligible.

In the next section, techniques to collect volatile and non-volatile data from
live systems will be introduced, for both Windows and Unix-based systems.
Methods to reduce the forensic flaws of Live Response – modification of the
evidence and missing trust in the underlying operating system – to a minimum
will be given for both operating systems by demonstrating how to assemble a
Live Response toolkit.

4.2 Best Practices and Standard Procedures

4.2.1 Live Response on Unix-based operating systems

This section introduces common methods to perform Live Response on Unix-
like operating system including BSD, Linux, Solaris and Mac OS X. Some of
the tools or techniques may not be applicable to all of these operating systems,
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either by design or because there does just not exist a version of a tool for this
operating system yet. Because of constant development of operating systems
and the tools, it can not be guaranteed that a particular tool or method de-
scribed here will work in all circumstances. Most of the software used for the
Live Response procedures for Unix-based operating systems is available from
the GNU Project [52] website.

Volatile data

There are a large number of tools that can be used to recover volatile infor-
mation from a running system. Most of them concern the state of network
connections or processes, but there are also some more general information
that may be useful in an investigation. All of the tools to collect volatile in-
formation are standard system tools on Unix/Linux systems, the following list
includes the most common tools used and a small description of each:

• date: prints out the current system date and time

• hostid: prints out the host ID, a numeric identifier for the current host

• hostname: prints out the current hostname

• rpcinfo -p 127.0.0.1: prints out a list of all RPC (remote procedure
call) services registered on the current host

• netstat -an: prints out a list of current network connections and open
TCP/UDP ports

• netstat -rn: prints out the internal routing table

• ifconfig: prints out network interface parameters

• lsof: prints out list of open files and executables opening them

• ps -aux: prints out list of running processes

• lsmod: prints out list of loaded kernel modules

• mount: prints out list of mounted file systems

• df: prints out information about mounted file systems

Analyzing this information can already give an investigator valuable clues
and can help to confirm suspicions about the incident. For example, if suspect-
ing that an attacker installed a backdoor on the victim host, the list of open
ports obtained with netstat and the list of running processes obtained using ps

may reveal the listening backdoor. The lsof output may further confirm this
conclusion. In another case, an attacker may have manipulated a host’s internal
routing table or the network adapter’s configuration to intercept traffic to and
from the victim host, which could be revealed by the output of ifconfig and
netstat. It is up to an investigator how to use the information gained using
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the commands listed above, and it certainly depends on the kind of incident
that is investigated.

There are also a number of more complicated ways to assess the volatile data
on a running computer system, mostly this concerns analysis of the RAM of
the host. Depending on the operating system there are several different ways to
read main memory, most notably using the devices /dev/mem and /dev/kmem.
The tool memdump [29] offers the ability to capture the complete main memory
of a running system, avoiding some of the potential problems that normally
arise when working with the memory devices. For detailed information about
how to perform full memory dumps, refer to [68]. Another possible way to look
for information is the /proc virtual filesystem, which serves as an interface to
internal kernel data structures. Data in the /proc filesystem is only partially
human-readable, the manpage of proc displayed with man proc contains infor-
mation about the structure of this virtual filesystem. Because of the complexity
of the methods described above, direct RAM capturing and review of the /proc
filesystem should only be done by very skilled investigators and only in cases
where a lot of resources and time can be allocated to the analysis of this data.

Non-volatile data

Apart from these volatile data a lot of non-volatile data is usually collected
too, that could also be obtained in a dead analysis by analyzing the forensic
duplicates of the hard disks. In some cases the live collection is preferable,
because special tools display data in a human-readable way, which would not be
easy to reproduce during a dead analysis. In other cases data is collected simply
because it is then already available very early in the investigation, allowing to
quickly assess an incident and contain it if necessary. Activities commonly
performed include:

• uname -a: acquire system version and patch level

• rpm -qa: obtain package information (only possible if RPM package man-
agement is used)

• w, who: list users currently logged on

• last: list history of logins

• lastcomm: list process accounting logs (only possible if process accounting
is enabled)

The information about the system version and installed packages can be used
if a system has obviously been compromised by using an exploit of some software
vulnerability. In this case, knowing about the exact operating system version
and installed software can help to narrow down the list of possible exploits that
may have been used. Information about logins can help to identify unexpected
users or may even reveal a rogue login sessions that is still active. In addition
to these information regarding the operating system itself, typically some data
is collected about the file system of the host in question:
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• find / -printf "%m;%Ax;%AT;%Tx;%TT;%Cx;%CT;%U;%G;%s;%p\n"

prints out file name, MAC timestamps, ownership information and file
size of every file in the file system

• find / -type f -xdev -exec md5sum -b {} \;

prints out MD5 checksums for every file in the file system

• review /var/log/messages, /var/log/secure

• review /etc/passwd, /etc/groups, /etc/inetd.conf and other impor-
tant configuration files

• review user history files, e.g .~/bash_history

• possibly transfer any suspicious file

The listing of file attributes can be used for correlation with other clues that
have been found earlier, e.g. by comparing timestamps of suspicious files with
login times of users. Using the find command it is also possible to create a
hash database of all the files on the system, making it easy to quickly check if a
certain file has been modified by checking available hash databases, which were
introduced in Chapter 3. Logfiles often contain a lot of information about the
activities performed on a computer, including those of an attacker. There is
also a number of important configuration files like /etc/passwd that are very
often involved in the manipulation of a victim host and that should be checked
routinely when investigating a computer security incident.

Armed with the volatile and non-volatile information gathered through the
steps described above, a lot of incidents can already be properly classified and
contained before even starting the dead analysis of the incident.

Preparing a Linux Live Response toolkit

This section will show a common way to prepare a Live Response toolkit that
addresses the two main issues of Live Response, namely the modification of
potential evidence and the lack of trust in the operating system that is used to
run the Live Response tools.

One of the first things to realize is that during the whole Live Response no
files must be created on the evidence system at all, because this is certainly
an unnecessary modification of the system’s hard disk. This is why normally
only command-line tools are used, because creation of files can be controlled
pretty well. A common way to record the output of the commands issued on the
running system is to connect it with a network cable to a forensic workstation,
e.g. a laptop, and then send the output of a command over the network to the
forensic workstation, where it is stored. All this can be done using the network
tool netcat, which is first used to make the workstation listen to incoming
connections on a specific port and store all incoming data in a file:

• forensic workstation: netcat -v -l -p port > $COMMAND.txt
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Then the command that corresponds to $COMMAND, e.g. ps is executed on
the evidence system and its output is sent via the network to the forensic
workstation.

• evidence system: $COMMAND | netcat forensic_workstation_ip port

After the whole output has been sent to the forensic workstation, the con-
nection can be terminated and the file $COMMAND.txt will contain the exact
output of the command executed on the evidence system. In unsafe environ-
ments, it is probably better to use an encrypted version of netcat such as
cryptcat [6], which can be used exactly like netcat and has the additional
benefit of providing strong encryption for the data transmitted. Now that a
safe way to store the output of Live Response tools without modifying the ev-
idence hard disk has been established, the executable files themselves have to
be prepared.

First of all, no binary that is already installed on the evidence system should
be used at all, because it might be modified to return false information, crash
the operating system or worse. This is why all Live Response tools have to be
trusted tools, stored on read-only media, which are then run from the media
during the process. In addition to this, most executable files on Unix systems
are dynamically linked, which means that certain standard libraries are loaded
from the operating system at runtime to reduce the file size of the binary. This
effect is undesirable during a Live Response for two reasons:

• Accessing the libraries on the evidence system changes the file timestamps
on those files

• All files on the evidence system may potentially be modified in a malicious
way

To avoid access to the library files stored on the evidence system, all executa-
bles should be statically linked, i.e. that all libraries needed to run the binary
are compiled into the binary file and it does not need to access additional files
at runtime. To obtain static binaries of all the Live Response tools, an inves-
tigator will most of the time have to download the source code of the tool and
manually perform a static compilation of the binary. A good description of how
to compile statically can be found in [75], if problems occur then usually trying
different modifications of the accompanying “Makefile” will succeed. If it is not
possible at all to compile a static binary of the tool, then an alternative should
be considered; if there is none, then the ldd command can be used to find out
which libraries the binary loads at runtime, and these libraries should then be
copied to the Live Response CD as well.

Having prepared the Live Response toolkit, the tools can then be used to
collect data and transmit it to the forensic workstation as described above.
To alleviate the process, the next section will describe a Live Response script
(adapted from [75]), that automates this process.
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Linux Live Response script

To show how the process of Live Response data collection can be automated,
this section will introduce a Live Response script, that has been introduced
in [75], see Appendix A.4. This bash script called ir-script-linux.sh is
designed to be run with root privileges from a CD which contains all trusted
binaries and eventually needed libraries in separate folders:

• # ls -l

• drwxr-xr-x 59 root root 2006 17 Jul 21:30 bin

-rwxr-xr-x 1 root root 4672 17 Jul 21:30 ir-script-linux.sh

drwxr-xr-x 14 root root 476 17 Jul 21:30 lib

All the trusted binaries are renamed by using the prefix t_, e.g. the date

tool will be named t_date, to avoid mixing up the trusted tools with untrusted
ones from the evidence system. After defining some variables, the script then
prints out a header for each command, executes the command using a trusted
bash shell (bin/t_bash) and then prints out a footer afterwards. The complete
output of the script can then be transferred to the forensic workstation with
netcat:

• forensic workstation: netcat -v -l -p port > live_response_data.txt

• evidence system: ./ir-script-linux.sh | ./t_netcat forensic_workstation_ip port

Scripts like these represent the current standard in automated Linux Live
Response, as they collect data with a minimum of modification to the evidence
operating system and with relatively little effort. Similar scripts could be de-
signed to work on BSD, Solaris or Mac OS X operating systems, since not all
commands are available for every platform, or some commands use different
command line options.

More thorough investigation of the evidence system, such as performing
main memory dumps or similar techniques should rather be done manually,
since although an error in the Live Response script will normally only trigger
an error message and nothing more, an error when reading or working with
main memory can easily crash the running operating system. Therefore before
trying more advanced data collection techniques, such a script should be used
to safely collect the more easily obtainable information.

4.2.2 Windows Live Response

This section introduces common methods to perform Live Response on Mi-
crosoft Windows operating systems, focussing on systems at least as recent as
Windows 2000, e.g. Windows XP and Windows 2003 Server. Generally tools
for one of these platforms will run on all of them, but because Microsoft contin-
uosly upgrades their operating systems, this can not be promised for all tools
used in this discussion. A lot of the tools used during Windows Live Response
can be obtained from the Sysinternals website [46], which offers an excellent
selection of free commandline tools, in particular the PsTools suite [43].
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Volatile data

Generally the volatile data that is usually collected during a Windows Live
Response is not very different from the data collected during a Linux Live
Response, except for a few special information specific to Windows, e.g. the
concept of “services”. Not all information can be collected using built-in tools
alone, therefore several free third-party tools are used:

• time, date: prints out system date and time

• netstat -an: prints out a list of current network connections and open
TCP/UDP ports

• netstat -rn: prints out the internal routing table

• doskey /history: prints out command history of current shell

• fport [16]: prints out a list of executables opening TCP/UDP ports

• nbtstat -c: prints out a list of current NetBIOS connections

• psloggedon: prints out a list of users currently logged on (PsTools)

• pslist: prints out a list of running processes (PsTools)

• psservice: prints out a list of running services (PsTools)

• psfile: prints out a list of remotely opened files (PsTools)

• at: prints out a list of scheduled jobs

• ipconfig /all: prints out current network configuration

These data can be used in the same way as already described for the
Unix/Linux case, by trying to link open ports to running processes, network
connections etc.

Like in the Unix case, there are some advanced techniques for data collection
on live Windows systems too, which mainly concern capturing contents of the
system’s main memory. The tool userdump.exe [32] can be used to create a
“dump” file for a running process, which contains the contents of the memory
a process occupied in main memory. Because the output of userdump.exe

can not be sent via the network with netcat directly, a network share should
be created on the forensic workstation which can then be accessed from the
evidence system to store the dump file. Dump files can be examined in a lot
of ways, for example with the Microsoft utility dumpchk.exe [31] or by using
strings [45] to extract all human-readable strings in the file.

Apart from these process memory dumps, it is also possible to perform full
system memory dumps with the help of a special enhanced dd [15] version for
Windows, which has been modified to be able to capture main memory. Such
a full system memory dump can often contain data that would not be recov-
erable even with Live Response techniques, e.g. residual data from terminated
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processes or destroyed files (see [75] for a detailed example). However, before
attempting to use these advance techniques, it is better to capture all the data
using the basic tools so that they are not lost in case of a system crash.

Non-volatile data

Non-volatile data collected from Windows systems again resembles the data
that can be collected from Unix/Linux systems, with a few additions and of
course special commands to retrieve the various logfiles. Some of the tools are
part of the Windows NT Resource Kit (NTRK) [33], which is sold by Microsoft
and includes some useful tools for Windows administration and management.
Non-volatile data that should be captured from a Windows system during Live
Response include:

• psinfo -h -s -d : obtain system version and patch level

• find c:\ -printf "%m;%Ax;%AT;%Tx;%TT;%Cx;%CT;%U;%G;%s;%p\n"

prints out file name, MAC timestamps, ownership information and file
size of every file in the file system, using find from the UnxUtils [58], a
set of Unix utilities ported to Windows

• regdmp.exe: prints out the registry hive file (included in NTRK)

• auditpol.exe: prints out information about the auditing policy of the
system (NTRK)

• ntlast[16]: prints out a history of logins

• psloglist -s -x [security|application|system] : prints out the se-
curity/application/system event logs (PsTools)

• pwdump [35]: prints out user account information, including password
hashes

• possibly transfer any suspicious file

• transfer available application-specific logfiles

Depending on the auditing policy, logfiles can be avaluable source for in-
formation, as well as application specific logfiles like the IIS [24] logfile of a
web server, which is often targeted in computer intrusion attacks. Since the
registry file of a Windows system is the central file which controls admin-
istration of the system, it should also be reviewed for obvious signs of ma-
nipulation, e.g. a lot of pieces of malware create additional services in the
HKLM\Software\Microsoft\Windows\CurrentVersion\Run registry key.

The combination of volatile and non-volatile data gathered from a Win-
dows system can often help a lot in the reconstruction of an incident and its
containment, just like with Unix/Linux systems.
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Preparing a Windows Live Response Toolkit

This section will describe how to prepare a Live Response Toolkit for Windows,
trying to minimize the impact of Live Response activities on the running system,
and to avoid using untrusted resources on the evidence system. First of all,
output of commands can be transferred from the evidence system to the forensic
workstation using a Windows version of netcat [34] in almost the same way as
in the Unix case:

• forensic workstation: nc.exe -l -p port > $COMMAND.txt

• evidence system: $COMMAND | nc.exe forensic_workstation_ip port

This allows to review the response tools’ output on the forensic workstation
without unnecessary modification of the evidence system.

Regarding the preparation of the executable files themselves, there is no
equivalent way to static compilation of the binaries like on the Unix platform,
particularly because the sourcecode for the Windows tools is rarely publicly
available. Most Windows executables make use of shared libraries, which are
called Dynamic Link Libraries (DLL) in Windows and contain pre-compiled
functions that can be used by several different programs just by loading the
respective DLL. Usually there are hundreds or even thousands of different DLL
files on a standard Windows installation. When a program is started, it loads
parts of the DLL files into his own memory space and is able to use the functions
the DLL provides as if they were included in the executable file itself.

To avoid access to possibly manipulated DLL files on the evidence system by
the Live Response tools, all DLL files that each program calls upon execution
have to be included in the same folder as the executable file. This solves the
problem because any DLL files called will first be searched for in the current
folder, and afterwards in the operating system’s C:\Windows\System32 folder
(on standard installations), which is to be avoided.

To find out which DLL files are called by a certain executable, the tool
Filemon [42] can be used. Filemon monitors and logs any system call that
involves accessing, reading from and writing to a file on the hard drive, and it
will thus show any DLL file that an executable reads from the evidence system’s
hard drive. The methodology to determine an executable’s dependencies would
then be [78]:

• Start monitoring with Filemon

• Run the executable

• Stop monitoring and record the DLL files that were accessed

All DLL files logged should then be copied into the same folder as the Live
Response tool. Double-checking with Filemon to confirm that all necessary
DLL files have been copied is a good idea. Repeating the process of monitoring
with Filemon and copying the DLL files for every tool in the Live Response
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toolkit will result in a large number of DLL files along with the execuables in
one folder, which can then be copied to a Live Response CD.

There is one thing to watch out for when preparing or using Live Response
tools on systems with Windows XP or newer installed: the Windows File Pro-
tection (WFP) [30]. WFP is a mechanism to protect certain critical system files,
e.g. some core operating system components like Kernel32.dll or NTDLL.dll
from tampering. Whenever any executable is run, these core DLL files are
touched, i.e. opened, but not read or modified, which updates these files’ last
access times. These accesses will be shown by Filemon when monitoring an
executable, but copying the DLL files to the exectuable’s directory will not
stop this (see [75] for more details). For the most part, these accesses can be
safely ignored, but an investigator should still document the changes done to
the access times of those DLL files on the evidence system.

Having prepared the tools and assembled the required DLL files, the toolkit
can now be used with a Live Response script to collect data in an automated
fashion.

Windows Live Response Script

The Windows Live Response script introduced in this chapter has been pro-
posed in [75] and represents the current standard in automated live data col-
lection for Windows systems using open source or free tools. The batch-file
ir-script-win.bat (Appendix A.5) has to be run with Administrator privi-
leges from the Live Response CD, from a directory which contains the script,
all executables and any DLL file identified in the previous preparation of the
toolkit. As usual the files are prefixed with a t_ to avoid confusing them with
programs installed on the evidence system (X is the drive letter assigned to the
drive the Live Response CD has been inserted in).

• X:\ dir

• 07.07.2006 22:41 <DIR> .

07.07.2006 22:41 <DIR> ..

07.07.2006 02:45 3.365 ir-script-windows.bat

07.07.2006 04:00 23.040 psapi.dll

07.07.2006 04:00 401.408 t_cmd.exe

07.07.2006 03:07 61.440 t_nc.exe

[...] (truncated)

The script should then be started from the CD using the trusted t_cmd.exe,
and its output is transmitted via a network to the forensic workstation.

• forensic workstation: nc.exe -l -p port > live_response_data.txt

• evidence system: ir-script-win.bat X | t_nc.exe forensic_workstation_ip port

Using this script, a large amount of valuable live data can be easily collected
from a running system with as little modification as possible.
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Advanced techniques to acquire process dumps or even full memory dumps
should not be used in such an automated approach, but rather manually after
the Live Response script has been run. This will allow to gather the volatile
and non-volatile information the tools in the script provide, before attempting
the memory capturing techniques that always involve the risk of crashing the
operating system.

4.3 Forensic Flaws in Current Practice

As it was mentioned before, the central paradigm of Live Response is that any
modification to the evidence system while collecting data has to be kept to
a minimum. Only if the possible changes of a certain method for live data
collection are small, well-understood and properly documented, its use can be
justified from a forensic, and especially, from a legal standpoint.

To meet this high standard, every method or tool used should be carefully
analyzed to assess its potential to alter evidence. In the preceding chapter,
Live Response scripts proposed in [75] were used for both Windows- and Unix-
based operating systems to automatically collect data from a running system.
Given the fact that the authors of this work are renowned forensic experts,
these scripts can be considered Best Practices when it comes to Live Response.
When analyzing the scripts’ effects on live evidence systems however, it turned
out that there were forensic flaws in them, concerning both the modification of
the original evidence and the dependability of the results of the Live Response
process.

4.3.1 File metadata collection

The Linux Live Response script uses the following command to print out a list
of all files with their metadata:

• ./t_find / -printf %m;%Ax;%AT;%Tx;%TT;%Cx;%CT;%U;%G;%s;%p\n

When called like this, the find command will list all files in the file system
and print out the respective file metadata, i.e. the permissions, MAC times-
tamps, used and group ownership, file size and file name. The problem is that
find, when it recursively traverses the file system, accesses all directories on
the way, thus updating their A-times, i.e. the last access times. This flaw also
applies to the Windows version of the Live Response script. Certainly alter-
ing the last update time of all directories is an undesirable modification of the
evidence system’s hard disk.

Collecting the file MD5 checksums of all files in the file system is also done
usind the find command:

• t_find / -xdev -type f -exec t_md5sum {} \;

Again, find recursively traverses the file system, this time executing the
md5sum command on each file to compute its MD5 hash checksum. This
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actually updates the A-time of every directory and every file that is hashed,
basically leveling the whole last access time information on the file system.
When testing the effect of the script on a Linux workstation, it turned out that
a combined 96% of all A-times where updated when using this script. This is a
serious modification of the original evidence that should absolutely be avoided.

It should be noticed that when find is used as above, the find command will
record the “right” A-time of the directories and files before updating it, that
means that although the A-times are updated by find, the correct times are
recorded in the Live Response script output. Nevertheless this modification can
lead to problems, for example when extracting file metadata later during dead
analysis in the Harvesting step. Together with the Live Response script output,
there will then be a discrepancy regarding the A-time information, because the
“real” A-times are only recorded in the Live Response script output. An oppos-
ing legal party will certainly question the validity of the original timestamps,
since they do no longer exist in the duplicated disk image, i.e. the principle of
repeatability of the analysis is violated. This flaw could then be used to argue
that the whole Live Response procedure was not forensically sound and altered
the evidence system in such a way, that the dead analysis results cannot be
relied on either. By discrediting one small part of the analysis process, the
complete analysis results’ credibility can be ruined.

4.3.2 Rootkit Detection

Whereas the file metadata collection issue raises questions about the forensic
validity of common techniques in Live Response, the question of rootkit de-
tection touches the reliability of live data collection. A rootkit is a program
or set of programs that allows an attacker to maintain an unnoticed presence
on a compromised system, enabling him to hide files, processes, ports, drivers
and so on, often including a backdoor for continued access. The earliest and
least sophisticated rootkits that were observed simply consisted of a set of ma-
nipulated standard tools like ls, rm, mv, ps, netstat etc. that replaced the
original versions of the same tools, filtering the output to hide certain informa-
tion. To beat this kind of rootkits, using trusted tools from a Live Response
CD as described earlier is already enough, because this practice does not rely
on untrusted tools.

Recent rootkits use methods far more advanced than the simple command
replacement technique to subvert the operating system. Since rootkits will be
discussed in detail in chapter 5, it suffices to say at this point that even using
trusted tools from a Live Response CD will not guarantee accurate results when
run on a system infected with a modern rootkit. This means that the output
of virtually every Live Response tool mentioned so far in this thesis can be
manipulated; files, open ports, network connections, processes and services,
login sessions can all be hidden or shown in an altered way. In particular the
files and processes belonging to the rootkit will be hidden, making its detection
more difficult. The bottom line is, when using the Live Response script on a
running system that is infected with a rootkit, and the investigator is not aware
of this, output of Live Response tools cannot be trusted and must be regarded
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as completely unreliable.
One could argue that although a rootkit can hide certain information on a

running system, a dead analysis will always be able to recover all information
that the rootkit hid, and it will also reveal the presence of the rootkit. First of
all, any volatile data that is manipulated is not reconstructable during a dead
analysis, so the otherwise valuable information about running processes, open
ports etc. is lost, unless special techniques to correct the rootkit’s manipulations
are used. Secondly, rootkits exist that leave no trace on the file system at all,
running completely in main memory; these rootkits will be undetectable on a
file system image, and if their presence is not noticed during Live Response,
there is a severe danger that an investigation will be using false data collected
during Live Response without ever knowing.

4.4 Improvements

4.4.1 File metadata collection

It was shown that collectiong file metadata or hash checksums from a live
system using a recursive find command greatly modifies the original evidence
and has serious implications. Ironically, a technique used in dead analysis can
be adapted for live analysis to avoid these complications.

When discussing metadata collection during the Data Recovery step of the
Analysis Phase, it was shown how open source tools from the Sleuthkit and a
small Perl script can be used to extract all file metadata information from a
forensic image of the evidence system’s hard disk:

• fls -r -p -l -m / -f file_system_type partition_image >

➥ part_fls.txt

• ./getmetadata.pl part_fls.txt file_system_type partition_image >

➥ metadata.txt

While experimenting with the getmetadata.pl script, the result was that
it can just as well be used to collect metadata from a live system instead from
a partition image. The getmetadata.pl script has to be slightly modified to
account for the fact that the output of the fls command can not be stored on
the evidence system’s hard drive. In addition, since the command is executed on
a untrusted operating system, trusted statically linked versions of all commands,
including the perl interpreter, are used.

Working with the new getmetadata-live.pl (Appendix A.6), which is
placed into the same directory as the Linux Incident Response script ir-script-linux.sh,
the file metadata would now be collected with the following command, where
/dev/raw_parttition stands for the raw partition device file of the partition
which contains the file system in question:

• ./bin/t_fls -r -l -p -m / /dev/raw_partition | ./getmetadata-live.pl

➥ file_system_type /dev/raw_partition
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The code in ir-script-linux.sh that collects the metadata and MD5
checksum information can thus be removed from the script. Because the name
of the raw partition device and the file system type may be different from system
to system, the above command has to be issued manually in a trusted shell
on the evidence system, and its output has to be transmitted to the forensic
workstation using netcat as usual. In this way, the original Live Response
script output file will not contain any file system information, but a seperate
file containing the output of the command above will be available.

Like it has already been said, using the original ir-script to collect file
metadata and MD5 checksums of all files in a file system resulted in approxi-
mately 96% of all A-times being updated. When doing the same experiments
with the new method using getmetadata-live.pl, only about 0,07% of all
A-times were updated, which can be attributed to normal background oper-
ating system activities. By comparing the output of both methods on a real
Linux workstation, it could also be shown that the outputs of both methods
are absolutely equivalent. Thus, the new technique has greatly reduced the
impact of the Live Analysis activities on the original evidence while retaining
its reliability.

4.4.2 Rootkit Detection

As explained above, rootkits can severely limit a Live Response procedure’s
reliability and its result can become worthless. Therefore detection of rootkits
should be performed to find out whether a rootkit is installed; if a rootkit is
detected, an investigator can decide to perform the Live Response anyway, skip
it altogether or he can try to use advanced techniques that may be able to
overcome the rootkit’s subversion. In any case, rootkit detection can provide
the investigator with more information about an incident and enables him to
make an informed decision about how to proceed.

On Unix-based systems, the tool freeware chkrootkit [5] can be used to
check a a running systems for signs of a rootkit infection; currently chkrootkit

can detect 60 different rootkits. It consists of a number of executable files and
makes use of some external binaries, which of course have to be trusted version
from the Live Response CD. To be able to use chkrootkit, the tools awk,
cut, echo, egrep, find, head, id, ls, netstat, ps, strings, sed and uname

are necessary. These programs are compiled into static binaries and stored on
the Live Response CD, along with the statically compiled chkrootkit binaries
(see [4] for build instructions). Once the Live Response CD has been prepared
like that, the following code can be added to ir-script-linux.sh to perform
rootkit detection as part of the Live Response process:

CHKRK="$BIN_PATH/chkrootkit"

## Scanning for rootkits

console "- running chkrootkit..\n"

echo "# Running chkrootkit #"

$CHKRK -p $BIN_PATH

echo "## END ##"; echo ""
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The output of chkrootkit is then included in the Live Response output
file created by transfering the script’s output to the forensic workstation with
netcat. If a rootkit is detected, the investigator will have the opportunity to
reassess the reliability of the collected information; generally he should lower his
trust into the results and not take critical decision based on the Live Response
data, since they could be manipulated by the rootkit.

On the Windows platform, several rootkit detection tools exist, yet none
of them can be easily integrated into the Live Response script like in the case
of Linux. Chapter 5 will develop a detailed methodology for rootkit detection
on Windows, therefore the discussion of these techniques is postponed at this
point. It should just be said, that rootkit detection on Windows will involve
using multiple tools with a GUI (Graphic User Interface), because adequate
command line tools to fulfill the task do not exist yet.

4.5 Discussion

This chapter introduced a methodology for Live Response which represents the
current standard in collecting data from live systems. Live Response is the only
way to preserve certain pieces of volatile information from an evidence system,
e.g. a list of open ports, of all running processes or the exact system time. In
addition to this, some non-volatile information is also collected, even if they
could also be recovered from a disk image of the system’s hard drive during
dead analysis. Their collection during Live Response is justified by the fact,
that very often live collection is considerably easier, e.g. in the case of login
logfiles in a specific format, which can easily be collected using the w command,
whereas parsing the file during Data Recovery later would be quite involved.
On top of that, the sooner crucial information about the incident is known, the
sooner an Incident Response Team can take appropriate measures to contain
the incident to prevent further damage.

Because all Live Response activities take place on an actually running sys-
tem, there are two main concerns regarding the validity of Live Response prac-
tices:

• Applications run on a live system can not be trusted because the system
might be compromised

• Running applications potentially alters the live system’s state

To address the first issue, all tools during the process are trusted tools stored
on a read-only Live Response CD. In the case of Unix-based operating systems,
statically linked binaries are compiled to aviod using possibly compromised
library files on the evidence system; for the Windows platform, the required
DLL files for all the executables are also stored on the CD.

The second issue can not be taken care of as easily, because there is no
way to completely prevent applications run on a live system from modifying
the system’s state. To minimize the impact of live data collection procedures
on the evidence system, creating files on the evidence system’s hard drive is
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completely omitted, all output is transferred to a forensic workstation via a
network connection. All tools and methods have to be carefully examined to
assess the extent of their modification of the evidence system.

This thesis proposed two improvements to current practice, the incorpora-
tion of rootkit detection into Live Response and an alternative way of collect-
ing file metadata and hash checksums. It was shown how undetected presence
of a rootkit can undermine trust into the results of Live Response, and even
the whole investigation. For Unix-based systems a modification to the Live
Response script was introduced which integrates rootkit detection into the al-
ready well-established process of Live Response; the next chapter will propose
an equivalent approach for Windows-based systems.

In the case of file system metadata collection, experiments were conducted
with current best practices that resulted in detection of a flaw in the data
collection method: the unwanted modification of file timestamps. This issue has
been addressed by modifying an already known method for metadata collection
during dead analysis and showing that it does not share the same flaws, thus
increasing the forensic integrity of file metadata collection.

Together, these two changes to current Live Response procedures result in
a more reliable and reasonable way of conducting automated data collection on
live hosts.

4.6 Summary

This chapter gave a detailed survey of data collection from live systems, called
Live Response. By introducing the notion of volatile and non-volatile data, the
motivation to conduct Live Response was given, while also discussing possible
side-effects of working on live evidence systems and weighing them up against
the advantages.

Afterwards current Best Practices for Live Response procedures were given
for both Windows and Unix-based operating systems. During the preparation
of an appropriate Live Response toolkit, accepted ways of mitigating the risk of
modification of the original evidence were used, resulting in a toolkit of trusted
tools that keeps changes to the live system to a minimum. Live Response scripts
for both platforms were introduced, which are based on scripts proposed in [75].

Afterwards two weaknesses in the methodology were discovered; the first
one concerned the collection of file metadata and hash checksums, where the
method used severely altered the original evidence by updating the last access
times of all files and directories. This made it impossible for an investigator
or an independent expert to arrive at the same results in a later phase of the
analysis, thus violating the principle of repeatability of the analysis. The second
weakness that was discussed is the missing rootkit detection routines in the Live
Response procedures. It was shown how a rootkit infection can seriously distort
live data collection results and thus make the whole work worthless.

To adress the improper file metadata collection, an already known way to
collect these information has been adapted to be applicable to live data collec-
tion. In order to integrate rootkit detection into the Live Response procedures,
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the Live Response script for Linux has been updated to include the use of a
special rootkit detection tool, chkrootkit. A solution for rootkit detection on
Windows systems will be developed in the next chapter, where the topic of
Windows rootkits is explored in more detail. Implementing these changes in
the Live Response practices has improved the overall reliability of the results
and has reduced the inherent forensic flaw of Live Response, the modification
of the evidence.
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Chapter 5

Windows Rootkits

5.1 Introduction

This chapter will take a detailed look at rootkits for Windows operating sys-
tems, their basic principles and techniques, as well as ways to detect rootkits
despite their stealth capabilities. A rootkit can be defined as “a set of programs
and code that allows a permanent and undetectable presence on a computer”
[73]. Typically rootkits are used to hide certain files, processes and other infor-
mation on a running system, making them one of the most dangerous classes
of malware, because they can exist on a compromised system unnoticed for
years. Additional functionality like a backdoor or keyboard sniffers can often
be added, turning rootkits into the ultimate attacker’s tool. By examining cur-
rent rootkits and detection tools and putting them to the test, it will be shown
how rootkits can nevertheless be detected, resulting in a methodology to safely
detect publicly available rootkits.

5.2 Background: Windows Kernel and Rootkits

To understand how rootkits work it is first of all important to understand the
basics of the Microsoft Windows kernel architecture and the way the operating
system works beyond the normal graphical user interface. The techniques used
by rootkits to subvert the operating system are fundamentally different from
the way normal software operates. Often they manipulate internal operating
system tables that are used to control the execution flow of other software on the
system, causing the rootkit code to be executed instead of the original code.
In other cases rootkits will filter or forge the output of system calls to hide
themselves or other objects and yet another class of rootkits modifies memory
contents directly to fool the operating system.

Because of the complexity of the underlying technology, it will hardly be
possible to explain all details of the operating system mechanism completely.
Therefore this introduction will only focus on a few central concepts that al-
low presentation of the most common rootkit techniques, namely Hooking and
Direct Kernel Object Manipulation. For detailed description of Windows oper-
ating system internals, refer to [89] or [73]; the latter can also be considered to
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be a reference work on rootkits.

5.2.1 Windows Internals

Access control at hardware level

The first important concept to understand is how access control is realized on
the x86 processor family, which is the processor type used in most personal
computers today. In this context, access control means how the hardware con-
trols which kind of instructions may be used by a particular process, which
areas of memory or files may be modified, and how hardware components may
be accessed and written to. Without access control at the hardware level, any
process would theoretically be allowed to access and modify every file, alter the
memory contents belonging to another process and issue every CPU instruc-
tion, no matter whether that could disturb other processes or even crash the
whole system.

The x86 processor type has provided the capability for access control for a
long time, in the form of four privilege levels called rings, where Ring 0 is the
most privileged and Ring 3 is the least privileged (see figure 7). Since Windows
NT, Microsoft operating systems use the two rings Ring 0 and Ring 3 for access
control. All user-mode programs, i.e. most normal applications, run in Ring 3
and have only limited access to memory, and cannot access hardware directly;
this will be prevented by the CPU itself. Ring 0 contains all software that runs
with full system priviliges, for example the Hardware Abstraction Layer (HAL),
device drivers, IO and memory management – essentially all components of the
operating system kernel. Code running in Ring 0 can access the whole memory
space and is able to execute privileged instructions, e.g. allowing access to
hardware components like graphic cards or the keyboard. Programs running
in Ring 3 are often called userland programs and those running at Ring 0 are
called kernel programs.

Ring 2

Ring 3

user programs

Ring 0

kernel programs

Ring 1

Figure 7: Ring architecture of the Intel x86 processor family

Since even userland applications may have to access hardware from time
to time – e.g. when using a system administration programm to install new
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device drivers for a graphics card – special mechanism exist that allow a user-
land program to cross the barrier to Ring 0 and use the otherwise unavailable
functions in a controlled way. Some rootkits exploit this capability to plant
their own device driver (a *.sys file) containing their malicious code in Ring 0,
allowing them to run at full privilege level; these rootkits are also called kernel
rootkits. It is important to notice that any Ring 3 detection tool will have a
large disadvantage against a kernel rootkit, because the two are basically not
competing with each other on equal terms. Because a Ring 0 rootkit can control
the environment in which other software runs, it can achieve stealth and avoid
detection in a very effective way.

The System Service Dispatch Table

Whenever a userland program wants to use a function that is only available
to Ring 0 programs, it issues a so-called system call. A system call interrupts
execution of the user program and transfers execution control to the kernel,
which will then process the requested service as indicated by the system call
number stored in the CPU register EAX, possibly using a set of input param-
eters received from the userland application. After the system call has been
processed, execution of the userland program is resumed, which can now use
the system call’s results for further operation.

On Windows, there is a large number of these service functions provided
by the kernel, and each function is identified by a unique system call number.
Whenever a system call is made, a special kernel routine called KiSystemService

is executed in Ring 0, which reads the system call number from the EAX register
and looks up the matching function in a table, the System Service Dispatch
Table (SSDT). The SSDT contains the memory addresses of all functions that
correspond system calls, making it one of the central points of execution flow
control in the kernel. Thus the SSDT naturally represents an opportunity for
malicious modifications by a kernel rootkit; the technique for SSDT manipula-
tion will be described in more detail later.

5.2.2 Hooking Techniques

Altering the execution flow of programs is one of the most prominent techniques
of rootkits to subvert the Windows operating system. By having code that
belongs to the rootkit execute instead of the original, a rootkit can manipulate
the operating system and the programs that are run on it to achieve stealth, i.e.
operate completely unnoticed and hidden from the user. The various techniques
of rerouting the execution of programs are commonly referred to as Hooking. It
should be noted that often legitimate software uses Hooking techniques too, so
the presence of a hook on a system does not automatically mean that a rootkit
is installed.

IAT Hooking

The easiest form of hooks manipulate the way in which individual applications
are executed, in particular how they import library functions, that are typically
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provided on Windows operating systems in the form of DLL files. Whenever
an application is run, a list of required library files included in the application
executable file is used to load the matching library files into the application’s
memory space completely. Apart from the list of required DLL files, the ex-
ecutable also contains a structure that stores the specific functions inside the
respective library files that the application needs. These functions’ locations in
memory are determined and a special table called Import Address Table (IAT)
is loaded with the library functions’ names and the corresponding address of
the function in the application’s memory space.

A rootkit that has access to an application’s address space can manipulate
the IAT in order to make its own code execute instead of the original library
function. It will do this by overwriting the address of the IAT functions with
the address of the rootkit function’s location in memory space, allowing the
rootkit to manipulate the parameters or output of the original function. There
are a number of userland rootkits that will use IAT hooking to manipulate the
IAT of every application running on a system, which enables them to hide their
presence globally across the whole operating system. Figure 8 shows how IAT
Hooking alters the execution path of a program.

Rootkit Code

Application Code

push x

push y

mov ebp, esp

...

....

call(library_function_a)

Import Address Table

library_function_a     0xABCD1111

library_function_b     0xABCD2222

...

0xABCD1111

library_function_a()

push ebp

mov edi, edi

...

Rootkit Code

Figure 8: IAT Hooking – The solid line represents the normal execution path,
the dotted line shows the hooked path

Inline Function Hooking

A slightly more elegant hooking technique does not overwrite the IAT address
of the library function to be hooked, but instead modifies the function’s code
directly in memory. Such an inline function hook will usually patch the first few
instructions of the hooked function with a special jump instruction to the rootkit
code, which will then be executed before the original code. Usually the rootkit
code will then call the original function, because when execution of the original
function has completed, control will return to the rootkit code, allowing to
modify the results of the library function. Inline hooks have several advantages
over standard IAT hooks, mainly because the technique avoids problems when
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the function is not called using the IAT, because no matter how a process calls
the respective function, the inline hook is always effective.

SSDT Hooking

Whereas IAT and Inline Function Hooking all take place in the userland realm,
there are also techniques to hook execution in the kernel. As previously ex-
plained, one of the central tables that control execution of kernel functions is
the System Service Dispatch Table. Whenever a system call is performed, the
kernel function KiSystemService takes control over the execution and looks
up the memory address of the kernel function corresponding to the system call
number in the SSDT.

A rootkit can subvert this mechanism by exchanging the original function’s
address with the address of the rootkit’s hook function. The hook function can
then imitate the original function but choose to filter out certain information,
e.g. a function that reports a list of open ports could be replaced by a similar
function that does the same but does not display a certain range of ports,
which is used by a built-in backdoor of the rootkit. Overwriting the addresses
in the SSDT is generally a lot harder than IAT Hooking, but the details have
intentionally been left out in this context to be able to just explain the rough
concepts. A detailed description of the method can be found in [73], figure 9 is
a simplified representation of the technique.

System Service

Dispatch Table

system_call_x        0x10002000

system_call_y        0x10003000

system_call_z        0x10004000

function_x()

function_y()

function_z()

Hooked System

Service Dispatch Table

system_call_x        0x10002000

system_call_z        0x10004000

system_call_y       0xdeadbeef

function_x()

function_y()

function_z()

rkfunction_y()

Figure 9: SSDT Hooking – left: before hooking, right: after hooking

5.2.3 Direct Kernel Object Manipulation

Hooking techniques are a solid technique of subverting an operating system,
but their main drawback is, that a hook can usually be detected and there
are several tools for hook detection, some of which will also be introduced in
later sections. An advanced technique for subversion, that e.g. allows to hide
processes, directly manipulates the very data structures in kernel memory that
keep track of the state of the operating system, therefore it is called Direct
Kernel Object Manipulation (DKOM).

Windows keeps a number of undocumented data structures in kernel mem-
ory which for example contain a list of running processes, of threads scheduled
for execution etc. Part of DKOM techniques is therefore trying to understand
the structure of these kernel objects to be able to manipulate them without
making the operating system unstable or even crashing it completely. The
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technique then consists of careful modifications to the in-memory data struc-
tures to hide certain objects from the user. For example, processes are recorded
in a doubly-linked list, so that if the offset of the forward and backward pointers
to the next or previous process in the list is known, it is possible to exclude a
process from the list with simple pointer reorganization. Because the schedul-
ing of execution of processes does not depend on a process being present in that
list, this technique hides the process successfully (e.g. from the Task Manager),
but the process is still executed unnoticed (see figure 10 for a simplified model
of the process hiding technique).

EPROCESS

...

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

BLINK }

FLINK_modified

EPROCESS

...

HIDDEN

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

FLINK

}BLINK_modified

Figure 10: Process Hiding with DKOM [73]– The upper figure shows a part
of the original linked list of processes, the lower figure shows how the middle
process is hidden by pointer manipulation

DKOM has certain benefits over Hooking, especially because it is very hard
to detect, since directly modifying the raw main memory contents with a Ring
0 rootkit can not be controlled by any built-in security mechanism in Win-
dows. The disadvantage of DKOM is its extreme instability, since there is no
documentation about the actual structure and usage of the kernel objects by
the operating system, and often even minor operating system upgrades change
the way they look like and how the operating system uses the kernel objects.
Nevertheless DKOM has become a concept that has to be considered one of the
most sophisticated and dangerous rootkit technologies that exists.

5.3 Overview of Rootkits and Detectors

5.3.1 Rootkits used

For the experiments on rootkit detection, a number of publicly available rootk-
its were used, all of which can be obtained via the rootkit.com website [38].

80



This includes userland rootkits as well as kernel rootkits, and rootkits which
use Hooking techniques as well as some that use DKOM to hide their pres-
ence. The userland rootkits included in the experiments were AFX Rookit,
Hacker Defender (also called HxDef), He4Hook, NtIllusion and Vanquish. All
of these rootkits offer about the same capabilities of hiding processes and files,
sometimes drivers or services; the details will be described in the next section.

Kernel rootkits included in the experiments were FU, FUTo, phide and
HideProcessHookMDL (HPHM), where the latter is more of a proof-of-concept
device driver that allows to hide processes by using SSDT Hooking. It was
chosen nevertheless because no other rootkit could be included that uses this
technique. FU, FUTo and phide all use DKOM techniques to hide processes,
FU and FUTo even offer functions to elevate a process’s privileges and also alter
other kernel objects than the linked list of processes.

There were also some related pieces of software, namely cfsd and Klog,
which were included in the trials although they are not rootkits, because they
use very similar techniques. Cfsd is a file system driver, which can be used to
misrepresent the contents of a file system, for example allowing to hide certain
files. Klog is a device driver that acts as a keyboard sniffer, i.e. it logs everything
typed into the keyboard into a file without being noticed.

5.3.2 Detection tools used

After selecting the rootkits for the experiments an assortment of rootkit de-
tection tools was assembled to be able to test the various technologies used
by rootkits against the different kind of detection tools. Among them were
two tools that explicitly look for hooks, VICE [38] and Respendence Software
Rootkit Hook Analyzer (RKHA) [36]. VICE detects both userland and kernel
hooks, and can discover normal IAT hooks, inline function hooks, SSDT hooks
and also more advanced hooks, while Rootkit Hook Analyzer only detects kernel
hooks.

Another class of detection tools directly looks for hidden objects on the
running operating system, the ones used for this thesis are F-Secure Blacklight
[12], RKDetector [37], Rootkit Revealer [44], and UnhackMe [18]. They are
generally run once and the output is a list of all hidden objects found. Black-
light can detect hidden processes and files, RKDetector and UnhackMe detect
hidden processes and will sometimes also alert because of suspicious services
and corresponding registry keys. Rootkit Revealer can detect hidden files and
registry keys, including those belonging to a system service, making it possible
to also detect hidden services indirectly.

It is known that Blacklight and Rootkit Revealer use a cross-view detection
approach, which identifies hidden objects by comparing the output of high-
level API reporting functions with results gained from parsing the appropriate
structures on a very low level. For example, to find hidden files, a cross-view
detection tool would first use the Windows API to request information about
the contents of the file system. It would then use low-level methods of parsing
the file system itself, and compare the output with the API output, uncovering
any files that were hidden at API level. A cross-view approach only works
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if the subversion of the rootkit does not manipulate the operating system at
the same or even lower level than the detection tool uses for its baseline data
collection. Apart from this limitation, cross-view detection is one of the most
effective ways to find rootkits, because it is “generic” in the sense that is does
not scan for specific rootkit signatures or for signs of a data hiding technique
like hooking.

The tools IceSword [23] and DarkSpy [8] are both freeware tools that offer
the possibility to look for rootkits in an interactive fashion. For example both
offer a function to view a list of currently running processes, like the Windows
Task Manager, or an Explorer-like application to browse the file system or the
Windows registry. The difference to the ordinary reporting and browsing tools
is that they use very advanced techniques to gather the data about the respec-
tive objects, often exploiting the way in which rootkits typically hide processes
or files. Although IceSword and DarkSpy may sometimes highlight hidden pro-
cesses using similar techniques as the cross-view detection tools, generally they
have to be used in an interactive fashion by an investigator who systematically
looks for sings of a rootkit.

To complete the set of detection tools there are also a number of command
line tools that cannot be classified like the tools above, these are modgreper,
flister and System Virginity Verifier (all from [25]). Flister is a tool that can be
used to detect hidden files, exploiting some common bugs in rootkits when using
file hiding techniques. Modgreper scans kernel memory for hidden modules,
which can sometimes reveal the presence of a rootkit that uses a hidden module
in the kernel to do its work. The System Virginity Verifier (SVV) written by
Joanna Rutkowska is a unique tool, which is related to the concept of Explicit
Compromise Detection [81], which means that the integrity of critical operating
system elements is checked to detect a possible compromise. SVV compares the
code sections of kernel modules in memory, i.e. drivers and DLLs, with their
representation on the file system, where the files are stored. If discrepancies are
detected between the stored file and its image in memory, SVV evaluates the
type of the change and outputs an infection level that denotes the severity of
the modification, and whether it is likely to be a malicious modification.

To see how standard Antivirus Software works against rootkits, additional
tests were made with Norton Internet Security 2005 (NIS), and to see how some
standard Live Response tools are influenced by the presence of a rootkit, some
more tests were conducted with netstat, fport, pslist, psservice, find and
regdmp.

5.4 Dependability Experiments

5.4.1 Setup

Test platforms

To get an idea of how rootkits work on different version of the Windows operat-
ing system, all experiments were executed on four different operating systems,
namely on Windows 2000 Service Pack 4 with all official update as of June 1,
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2006, Windows XP without any updates, Windows XP Service Pack 2 with all
updates and Windows 2003 Server Service Pack 1 with all updates. All systems
were standard installations, with a minimum of required device drivers installed
to be able to run properly. After the setup, all systems were kept offline and
all software was copied from a CD to the test platform, to avoid accidental
compromise by a real attack.

Compatibility issues with rootkits

There were significant compatibility problems with the rootkits, in particular,
the only rootkits that could be installed on Windows 2003 were Hacker De-
fender, Klog and Vanquish. Other notable problems occured with cfsd and
He4Hook, none of which could be successfully installed on any of the test plat-
forms; it is not clear whether this was a known issue or caused by incorrect use
of the supplied files, because these rootkits come with no documentation at all.
On top of that, NtIllusion did not work properly on any operating system but
Windows XP Service Pack 2, HideProcessHookMdl did not work on Windows
2000 and the AFX Rootkit could not be executed on Windows XP Service Pack
2.

Compatibility issues with detection tools

There were also minor compatibility issues with some of the detection tools,
although they appeared to be far more robust than the rootkits themselves. In
particular, VICE does not execute properly on Windows XP Service Pack 2;
the problem seems to be the latest patch to the .NET framework, which is used
by VICE. In addition to these incompatibilities, SVV does not work properly
on Windows XP Service Pack 2 with the latest patches installed as of June 1,
2006. Although it does execute normally and outputs a result, it also outputs an
error message and it can be clearly seen from the resuts that it did not operate
at full effectiveness. The last incompatibility was with DarkSpy and Windows
2000 SP4: when starting DarkSpy, the operating system would simply crash
immediately with a Blue Screen, making it impossible to test DarkSpy on this
platform.

5.4.2 Execution

Configuration of the rootkits

To start the experiments the rootkits were, if necessary, configured using the
included documentation to use all the capabilities for stealth that they provide.
Specifically, this means:

• If the rootkit offers a file hiding capability, a sample folder and files that
should be hidden were created.

• If the rootkit offers a process hiding capability, an appropriate process
that should be hidden was started.
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• If the rootkit offers hiding of network ports, an open port was created
using a listening netcat session.

• If the rootkit offers a registry key hiding feature, sample registry keys and
values to hide were created.

• If the rootkit allows hiding of services and drivers, sample objects of the
respective type to be hidden were configured.

Some rootkits hide files or processes by using a magic string, i.e. if a file
or process name contains a specific string, it will be hidden; AFX, NtIllusion,
Vanquish, and HideProcessHookMdl use this technique. Hacker Defender has a
real configuration file which allow definition of different magic strings for differ-
ent classes of objects to be hidden, and it allows to define network port ranges
to hide. FU, FUTo and phide can hide processes by referring the process’s
identification number, or PID. The keyboard sniffer Klog did not have to be
configured.

Table 1 gives an overview over the hiding capabilities of the different rootk-
its.

Files Processes Registry Keys Ports Services Drivers

AFX Rootkit X X X X X –

FU – X – – – X

FUTo – X – – – X

Hacker Defender X X X X X X

Klog – – – – – –

NtIllusion X X X X – –

Vanquish X X X – X –

phide – X – – – –

HideProcessHookMdl – X – – – –

Table 1: Hiding capabilities of rootkits: an X denotes that the rootkit can hide
objects of the respective type

Rootkit installation

After configuration the rootkits were installed using the included loader pro-
grams, which is mostly a simple EXE file that will load the rootkit into memory
and start it, which results in immediate hiding of the desired objects. In this
case, hidden means that files are no longer visible in the Windows Explorer,
processes are invisible in the Task Manager, registry keys are invisible in the
Registry Editor, and open network ports are not detectable with netstat.
Drivers and services were checked using the System Information tool included
in Windows.

Generally, the rootkits succeeded in hiding the respective objects they were
designed to hide very well, all rootkits that have the capability the hide pro-
cesses, files, registry keys or network ports worked exactly as expected, hiding
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the target elements from the applications mentioned above. The only exception
is AFX Rootkit, which did not hide network ports as it was supposed to do.
Vanquish and Hacker Defender use a special service to operate, and they both
succeeded in hiding “their own” service. Driver hiding, which is offered by FU,
FUTo and Hacker Defender, did not work at all; all loaded rootkit drivers were
still visible with the System Information program.

For the test involving Norton Internet Security 2005, the installation was
actually done in two different orders, on the one hand by installing the rootkit
first and then NIS, and on the other hand by installing NIS first and then the
rootkit. The Live Response tools were all run at once using a small batch script
after the rootkit was installed and started.

Application of Detection Tools

After having installed a single rootkit and having documented its stealth prop-
erties, the rootkit detection tools were run to see if they would detect the hidden
objects and the rootkits themselves respectively. The output was then recorded
and it was checked whether all hidden objects that the detection tool can detect
have actually been detected; of course it makes no sense to blame a tool for not
detecting a hidden process, if it is not designed to do so. Having documented
the results for the detection tool, it was then uninstalled if necessary, and any
drivers it used were unloaded. After a system reboot, the state prior to test-
ing the previous detection tool was reestablished, if necessary by restarting the
rootkit and reconfiguring the sample processes and network ports. Then the
next detection tool was tested in the exact same way as described above.

5.4.3 Results

Differences between operating system versions

As a first result, there were absolutely no significant differences in the detection
performance between the different operating system versions used during the
experiments. In particular, there was no instance, in which a detection tool
detected any rootkit modification successfully on one operating system, but
failed on another one. The only differences were the compatibility issues of
some rootkits and detection tools that were also described in detail in the Setup
section. For this reason the results will be mainly be evaluated for the Windows
XP SP2 system, which was compatible to most rootkits and detection tools and
can thus be regarded as the reference operating system concerning the results
of the rootkit detection experiments. For the AFX Rootkit and VICE, which
were incompatible with Windows XP SP 2, the results on Windows XP without
any Service Packs were used.

Experimental Results

It turned out that rootkit detection was not a “black-and-white” issue, but
that in some cases detection tools would only partially detect the rootkits mod-
ifications. In this context, complete detection would mean, that the detector
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detected all changes that it is designed to detect. Table 2 gives an overview
over detection tools and the kind of objects they were designed to detect.

Files Processes Registry Keys Ports Services Drivers Hooks

Darkspy X X – X – X –

Flister X – – – – – –

F-Secure Blacklight X X – – – – –

IceSword X X X X X X X

modgreper – – – X X – –

RKDetector – X – – X X X

RKHA – – – – – – X

RK Revealer X – X – – – –

SVV – – – – – X X

UnhackMe – X X – X – –

VICE – – – – – – X

Table 2: Rootkit Detectors: an X denotes that the detector can detect hidden
objects of the respective type

A scale with three values was used to rate the amount of success that was
achieved. A success variable s was used to account for the effectiveness of the
detection tool as folllows

• s = 0: The detection tool did not detect anything.

• s = 1: The detection tool detected some rootkit modification or hidden
objects, but not everything.

• s = 2: The detection tool detected all possible rootkit modifications and
hidden objects.

The results can be seen in table 3. A “–” means that the tool in question was
not applicable, because it was not designed to detect the objects the particular
rootkit hid. It is obvious, that the Klog keyboard sniffer does not really fit into
this selection, because it does not actually hide anything. This issue will be
discussed after the analysis of the experimental results.

Antivirus Tests

Regarding Norton Internet Security, there were major differences when com-
paring its performance when the rootkit was installed first against the case in
which NIS was installed first. When NIS was installed first, it would detect all
files belonging to the rootkits and quarantine them, making it impossible to
even configure or install the rootkits. Results were different however when the
rootkits were installed before NIS. A pre-install scan performed by NIS did not
detect anything, and the software would be installed normally; except when
Vanquish was installed, which made it impossible to install NIS on top. It is
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AFX FU FUTo HxDef Klog NtIllusion Vanquish phide HPHM

Darkspy 2 2 2 2 – 2 2 2 2

Flister 2 – – 0 – 2 2 – –

Blacklight 2 2 0 2 – 2 2 2 2

IceSword 2 2 2 2 – 2 2 2 2

modgreper – – – 1 – – – – –

RKDetector 2 2 0 0 – 2 0 2 2

RKHA – – – – – – – – 2

RKRevealer 2 – – 2 – 0 2 – –

SVV 2 – – 2 – 1 2 – 1

UnhackMe 2 0 0 2 – 1 2 0 2

VICE 2 – – 2 – – 2 – 2

Table 3: Experimental Results for s

not clear whether this is a desired function of the rootkit, which would gener-
ally make sense, or just coincidence. After rebooting to finish the installation,
the Auto-Protect feature would then generally detect the rootkit during a full
system scan, quarantine the related files and stop it from operating. Of course
any modifications that NIS is not designed to detect remained unnoticed, such
as processes hidden with FU, FUTo, phide and HideProcessHookMdl, or the
keyboard sniffer Klog.

In the case of Hacker Defender though, NIS did sometimes not detect the
rootkit at all, allowing it to run unnoticed in the background. It would fail to
quarantine all files that belong to the rootkit installation, or not find any of them
during a full system scan. Despite extensive tests of NIS when confronted with
Hacker Defender, a pattern of behaviour could not be identified; NIS reacted
almost randomly to the same situation under the exact same circumstances. In
at least one case, it was possible to have Hacker Defender run in the background,
hiding files, processes etc., and NIS would not detect it in any way, neither
with its Auto-Protect feature or manual full system scans. But under the same
circumstances, NIS would also sometimes completely detect and disable the
rootkit; it was not possible to discover the reason for this seemingly random
behaviour. Full detection was achieved in roughly 80% of the experiments,
while in the remaining 20% of all cases, NIS did either not completely detect
the rootkit or fail completely.

Tests with Live Response tools

The results of the Live Response tools netstat, fport, pslist, psservice,
find, and regdmp, included in the experiments can be summarized quickly:
none of them reported any of the objects that were hidden by the rootkits.
The only way that these tools could be used to indicated a potential rootkit
installation, was when a hidden process had a non-hidden port open; in this
case, the tools would detect the open port, but not the process, a discrepancy
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that could alert an investigator if he carefully analyzed the output of the tools.

5.4.4 Analysis

The experimental results show that there were several excellent tools that were
able to detect all rootkit modifications, but there were also some that did not
perform well. The two interactive tools DarkSpy and IceSword performed ex-
cellent, both reaching a mean score of 2, the maximum possible. F-Secure’s
cross-view detection tool Blacklight also detected all modifications except pro-
cesses hidden by FUTo, which is an expected result, because FUTo is a modified
version of the FU rootkit, specifically designed to be able to evade detection by
Blacklight [17] .VICE also perfectly detected the hooks installed by the hooking
rootkits, although it has previously been mentioned that identifying malicious
hooks can sometimes be diffcult, because a lot of software, especially Antivirus
software, uses benign hooking.

Other tools that performed quite well were SVV with an average score
of 1.6 and Rootkit Revealer (1.5), along with the file lister flister (average
score of 1.5). The tools Rootkit Detector and UnhackMe did not perform
satisfactorily, with scores of 1.25 and 1.125 respectively; in addition to the lower
average results, these tools did not detect a number of rootkits at all, making
their use questionable and the results not very reliable. The very specialized
tools modgreper and Rootkit Hook Analyzer (RKHA) could not be evaluated
properly based on the experiments that were conducted, because they were each
only applicable in one case, which is certainly not representative of the tools’
reliability.

Norton Internet Security offers good protection against publicly available
rootkits if it is already installed on the system that is under attack. Even if the
rootkit had the advantage of being installed first, NIS would detect it in all cases
except when facing Hacker Defender, which lead to random detection failures.
The fact that NIS detected the publicly available rootkits is not surprising
because their source code is known and thus they are included in the set of
malware signatures that are routinely checked for by antivirus products. During
the experiments it also became obvious that the keyboard sniffer Klog would
not be detected, simply because it does not attempt to hide anything; this result
was therefore expected.

The fact that the Live Response tools tested failed completely in trying
to report the hidden objects does not surprise either: rootkits are specifically
designed to subvert these tools’ mechanisms, which generally means that they
subvert at least the high level-API reporting functions used by the Live Re-
sponse tools. This results shows that rootkit detection has indeed become very
important in forensic analysis because the standard tools used in Live Response
procedures do not work properly. Adressing this need for rootkit detection, a
methodology for rootkit detection has been developed, which will be described
in the next section.
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5.5 Rootkit Detection Methodology

Based on the results of the experiments, a methodology for rootkit detection
has been developed, which consists of using a combination of different detection
tools to add redundancy to the detection procedures. The proposed methodol-
ogy uses three tools: F-Secure Blacklight, IceSword and SVV. This combination
was chosen for several reasons; first of all, all three tools achieved good average
results in the experiments, reliably detecting rootkit modifications.

Figure 11: F-Secure Blacklight

Figure 12: F-Secure Blacklight detects a Hacker Defender rootkit

Secondly, these three tools represent three different approaches to rootkit
detection. Blacklight uses a cross-view based detection approach, it offers a
simple user interface, which allows to scan for hidden objects with a single
mouse click (see figure 11). After checking the system, Blacklight outputs a list
of hidden objects found (figure 12). Usage of IceSword differs in the way that
it offers information about certain operating system elements in an interactive
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Figure 13: IceSword Process browser: IceSword highlights a process hidden by
Hacker Defender

way; it offers a function that resembles the Task Manager to review running
processes (figure 13), a browser for the Windows registry (figure 14) and the file
system (figure 15), which resembles the Windows Explorer, and it also includes
function to view loaded device drivers, services, the SSDT and even more.
IceSword does not offer a convenient scanning option such as Blacklight, but if
an investigator knows what to look out for, it is a very flexible and powerful tool.
SVV was chosen to be included in the methodology because it represents yet
another technique to detect rootkits, by checking important operating system
elements for their integrity (a sample output of SVV can be seen in figure 16).
This technique requires the most technical knowledge about the concepts and
techniques used by rootkits, but for an experienced investigator it is one of the
most powerful and advanced tools to analyze a rootkit infection.

This comparison of the three tools has also shown that the methodology is
applicable for forensic examiners with different levels of understanding; Black-
light does not require any special background to be used, IceSword becomes
more effective in the hand of an experienced investigator, and SVV offers de-
tailed information which will be most helpful to a very skilled analyst. By
correlating the output of all three tools, the reliability of rootkit detection is
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Figure 14: IceSword’s Registry Browser is similar to the standard Windows
registry editor

Figure 15: IceSword File Explorer shows files that were hidden in Windows
Explorer

increased, because even if a rootkit manages to evade one of the tools, it can
still be detected by another one that uses different methods for detection. None
of the rootkits tested can evade the combination of Blacklight, IceSword and
SVV, and only an extremely sophisticated rootkit could hope to avoid detection
by all of the three tools together. Although it is difficult to quantify the success
rate of detection when using this methodology for an arbitrary rootkit infec-
tion, it is reasonable to assume that when facing a rootkit that uses techniques
similar to the ones tested in this thesis, the rate of detection is close to 100%.
Asssuming that the majority of rootkits used today fall into this category –
which appears reasonable – the likelihood to detect an actual rootkit detection
is equally high.
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Figure 16: System Virginity Verifier alerts changes to important system ele-
ments by Hacker Defender

5.6 Discussion

To explore the problem of rootkit detection from a forensic investigator’s point
of view, experiments were conducted to test the effectiveness of rootkit detection
tools against some of the most popular publicly available rootkits today. This
was justified by the fact that normal Live Response tools fail to uncover the
modifications done to operating systems by modern rootkits, which could also
be shown impressively by testing common Live Response tools on the rootkit
infected systems.

All experiments were planned and the test platform carefully prepared to
allow objective and accurate testing of the tools, and to gain a representative
view of their performance on the Windows operating system platform, multiple
different operating systems were included in the tests. A selection of detec-
tion tools that use different methods for detection was chosen, among which
were cross-view based detection tools and tools that use Explicit Compromise
Detection (ECD) to detect rootkits.

It could be shown that there exist a number of very good rootkit detection
tools, but also that some are not reliable enough to be used in a forensic in-
vestigation. By choosing a combination of three detection tools which achieved
good results in the experiments and which each represent a different approach
to rootkit detection, redundancy has been added to the process of rootkit detec-
tion, resulting in a reliable and accurate methodology. Using F-Secure Black-
light, IceSword and System Virginity Verifier, all publicly available rootkits can
be detected safely, and depending on the skill of the investigator, this toolkit,
especially IceSword and Blacklight, can also be used to analyze the rootkits in
more detail.

There is one thing to keep in mind when using IceSword and several other
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rootkit detection tools: a special device driver, for IceSword it is called IsPubDrv.sys,
is often copied to the systems hard drive to allow the detector to function prop-
erly. This of course contradicts the principle of not creating files on an evidence
system, because this is a severe modification of the evidence. The principle
problem here is, that in order to be able to detect a rootkit’s subversion, the
detection software has to be able to deal with the problem on the same level,
i.e. using a Ring 0 kernel component. Device drivers are the standard way
to gain access to Ring 0, and that is why the creation of a single file can be
tolerated in this context; otherwise the rootkit would have an implicit advan-
tage, because it can manipulate the operating system at a lower level than the
detection tool can reach.

5.7 Summary

In this chapter, the concepts and principles of Windows rootkits, one of the most
dangerous classes of malware today, have been introduced and the implications
for forensic analysis have been discussed, in particular in the context of Live
Response. Since the reliability of Live Response is severly crippled in a situation
where an evidence system is infected with a rootkit, a sound methodology for
rootkit detection is mandatory. To develop an adequate methodolgy, a survey
of common rootkits and detection tools was compiled to conduct a series of
experiments to evaluate the quality of the detectors. Rootkits and detection
tools were put to the test to determine the reliability of the individual tools when
facing diverse rootkits that also use different concepts to function, e.g. Hooking
and DKOM.

After having identified the best tools for rootkit detection, a rootkit de-
tection methodology was defined by combining the tools F-Secure Blacklight,
IceSword and SVV. It was shown that the combination of these tools represents
a reliable method to detect rootkits, using redundancy and multiple different
approaches to achieve reliable Windows rootkit detection. This methodology
can then be combined with the usual Live Response procedures, more specif-
ically, rootkit detection should be performed before all other data collection
procedures. If a rootkit is detected, the investigator can decide whether or not
to collect data using the standard Live Response tools, but in any case the data
should be considered not trustworthy and critical decisions should not be based
solely upon this untrusted information. Detection of a rootkit can also be a
reason to use advanced Live Response techniques like collecting main memory
dumps, and it can influence an investigator’s assumptions about the responsible
attacker. In any case it allows an investigator to reach more informed decisions
about how to continue with the investigation of the respective incident.
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Chapter 6

Conclusion and Future Work

In this diploma thesis, methodologies for conducting forensic analysis were in-
vestigated, focussing on ways to automate analysis while still achieving valid
and reliable results. For this reason, process models for Incident Response and
Computer Forensics respectively were introduced, which represent the two most
important concepts of for investigation of computer security incidents. By com-
paring these two process models, it could be shown that Incident Response and
Computer Forensics are two closely related concepts, and that they could be
integrated into a single process model, which will benefit from the advantages
of both models but will not share the unique disadvantages.

For this reason, a Common Model for Incident Response and Computer
Forensics was developed, which integrates a forensic analysis into a Live Re-
sponse framework, carefully evaluating the need for full-scale forensic analysis
by considering the circumstances of the particular incident. Each step of the
new model was explained in detail by first presenting commonly used tools
and Best Practices and then discussing the step’s significance within the whole
process. This lead to a thorough understanding of the crucial parts of the in-
vestigation of an incident, as well as an overview over practical methods used
during the analysis.

The step of Live Response was then dealt with in more detail, discussing
its significance and why it has become a mandatory part of a modern forensic
investigation. Live Response is comprised of various methods to safely collect
information from live systems, as opposed to the traditional forensic analysis
which only works on “dead” evidence. It could be shown that sufficiently reli-
able techniques exist that allow to gather valuable information from live systems
without disturbing them unnecessarily. When examining commonly accepted
Live Response practices it was discovered that some of them are not as foren-
sically sound as they seemed, modifying the evidence system in an undesirable
way by updating file timestamps on the hard drive. An improved method was
proposed which does not share this flaw but yields equivalent results. The
missing rootkit detection routines in current Live Response procedures were
motivation to investigate the problem of rootkit detection on Windows operat-
ing systems.

The basic principles of rootkits and Microsoft Windows internals were in-
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troduced to be able to show why rootkits are one of the most dangerous and
sophisticated classes of malware and why they are likely to stay a big concern
in the future. An overview of currently available detection tools and popular
rootkits was given in order to prepare a series of experiments to explore how
well rootkit detection tools can really detect different rootkits. These experi-
ments were then conducted, resulting in a detailed record of the effectiveness of
the detection tools. Based on the results, a methodology for rootkit detection
was proposed, which was able to detect 100% of all rootkit installations in the
tests, and which is expected to work well even when facing different rootkits.
This combination of three different tools that use different approaches to de-
tection and which complement each other well can now be used in Windows
Live Response situations to check for the presence of rootkits on an evidence
system. Its results are both reliable and accurate, yielding lots of information
about the rootkit’s modifications to the operating system.

By developing a rootkit detection methodology and by improving currently
common Live Response techniques, the overall reliability and dependability of
Live Response, and therefore of the whole forensic analysis process has been
improved. Nevertheless there are a lot of possibilities to continue the work
begun in this thesis, aiming at improving the reliability of forensic analysis
while using automated techniques. Each step in the Analysis Phase could be
scrutinized just like the step of Live Response, which was the focus of this work.

Recently there have been a number of researchers who exposed flaws in
common Best Practices for Computer Forensics, and the term “Anti-Forensics”
has been coined to label this class of attacks [77, 72]. These attacks focus
specifically on weaknesses in accepted forensic tools, such as EnCase, and how
they can be exploited to cause incorrect analysis results. These examples show
that trust in forensic tools that automate certain tasks always has to be justified,
and that a lot of commonly accepted tools might have to be reevaluated in light
of the recent results.

Although this thesis was able to propose a sound methodology for rootkit
detection, there are a number of factors that have to be considered when dis-
cussing the danger that rootkits represent. First of all, there are possibly a
number of rootkits that are not publicly available, but that are instead sold for
considerable amounts of money. There was no way to obtain samples of these
rootkits, and it cannot be said with certainty that the rootkit detection method-
ology would also detect all modifications of commercial rootkits. Secondly, a
lot of authors of public rootkits offer the option to pay for a modified version
of their public rootkit, which is then promised to be able to evade all common
detection tools. Again, no examples of customized rootkits were available for
test, and although the methods for detection with the proposed combination of
tools may be generic enough to catch even modified rootkits, no real guaranty
can be given. The principle of Explicit Compromise Detection seems to be the
most promising approach to detection of advanced rootkits, and there is still
a lot of work to do in this area [81]. It would also be desirable to automate
rootkit detection further, by trying to find ways to use the detection tools in
a pre-defined way to check for signs of a rootkit infection. Up to now rootkit
detection consists mostly of manual application of the detectors; it should be ex-
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plored how this can be alleviated while retaining the good rate of detection that
manual techniques achieve. The Open Methodology for Compromise Detection
[26] is a promising research approach in this matter.

Another major reason for concern is that rootkit technology is rapidly ad-
vancing, and detection tools that may work well today are likely to fail when
confronted with newer rootkits. Recently the prototype of a rootkit named
Shadow Walker [90] has been presented, which subverts the Windows mem-
ory manager to achieve stealth, a method which is completely undectable by
today’s rootkit detection tools. Lately an independent security researcher has
announced the development of a “hypervisor” rootkit called Blue Pill [25], which
uses virtualization techniques provided by modern CPUs to subvert the oper-
ating system at an even lower level than the kernel itself.

These problems and examples show that the race between rootkit developers
and rootkit detection developers is no different to the race between virus authors
and antivirus providers, and that constant research is necessary to keep up with
the latest developments to assure the security of computer systems and the
dependability of Computer Forensic analysis in the future.
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Appendix A

Sourcecode

This appendix contains the sourcecode of the scripts used in this thesis.

A.1 getmetadata.pl

### getmetadata.pl ###

#!/usr/bin/perl

open MACTIMES, $ARGV[0];

print

"MD5|Filename|Inode|Mode|ModeString|User|Group|Size|ATime|ADate|MTime|

➥ MDate|CTime|CDate\n";

while (<MACTIMES>) {

chomp;

@macrow = split( /\|/, $_ );

if (@macrow[1] =~ m/\(deleted-realloc\)/g) {

$md5sum = ’’;

} else {

$md5sum = ‘icat -f $ARGV[1] $ARGV[2] @macrow[3] | md5sum -b‘;

$md5sum =~ m/^(\S+)\s+.*$/g;

$md5sum = $1;

}

@atime = localtime( @macrow[11] );

@mtime = localtime( @macrow[12] );

@ctime = localtime( @macrow[13] );

@atime[4] += 1;

@atime[5] += 1900;

@mtime[4] += 1;

@mtime[5] += 1900;

@ctime[4] += 1;

@ctime[5] += 1900;

$atimeasc = sprintf("%02d:%02d:%02d", @atime[2], @atime[1], @atime[0]);
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$adateasc = sprintf("%02d-%02d-%d", @atime[4], @atime[3], @atime[5]);

$mtimeasc = sprintf("%02d:%02d:%02d", @mtime[2], @mtime[1], @mtime[0]);

$mdateasc = sprintf("%02d-%02d-%d", @mtime[4], @mtime[3], @mtime[5]);

$ctimeasc = sprintf("%02d:%02d:%02d", @ctime[2], @ctime[1], @ctime[0]);

$cdateasc = sprintf("%02d-%02d-%d", @ctime[4], @ctime[3], @ctime[5]);

print

"$md5sum|@macrow[1]|@macrow[3]|@macrow[4]|@macrow[5]|@macrow[7]|@macrow[8]|

➥ @macrow[10]|$atimeasc|$adateasc|$mtimeasc|$mdateasc|$ctimeasc|$cdateasc\n";

}

A.2 getsignatures.pl

### getsignatures.pl ###

#!/usr/bin/perl

open METADATA, $ARGV[0];

print "MD5|Filename|Inode|Mode|ModeString|User|Group|Size|ATime|ADate|MTime|

➥ MDate|CTime|CDate|Signature\n";

while (<METADATA>) {

chomp;

$sigdata = $_;

@sigrow = split( /\|/, $sigdata );

if (@sigrow[1] =~ m/\(deleted-realloc\)/g) {

$signature = ’’;

} else {

$signature = ‘icat -f $ARGV[1] $ARGV[2] @sigrow[2] | file -‘;

$signature =~ m/^[^:]+:\s+(.*)$/g;

$signature = $1;

}

print "$sigdata|$signature\n";

}

A.3 unknowns.pl

### unknowns.pl ###

#!/usr/bin/perl

open EVID, $ARGV[0];

while (<EVID>) {

$evid = $_;

@evidrow = split( /\|/, $_ );

$evidmd5 = uc( @evidrow[0] );

if (@evidrow[0] =~ m/\w/g) +
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$results = ‘grep -l $evidmd5 $ARGV[1]‘;

if ( !($results =~ m/$ARGV[1]/g) ) {

print $evid;

}

} else {

print $evid;

}

}

A.4 ir-script-linux.sh

### ir-script-linux.sh ###

#!./bin/t_bash

# Environment variables

FIND_PATH="/"

BIN_PATH="./bin"

LD_LIBRARY_PATH="./lib"

export LD_LIBRARY_PATH

#More variables

#FIND_FLAGS: permissions, 3 time stamps, user, group, size, file name

FIND_FLAGS="-printf %m;%Ax;%AT;%Tx;%TT;%Cx;%CT;%U;%G;%s;%p\n"

PASSWD_PATH="/etc/passwd"

GROUP_PATH="/etc/group"

INTED_PATH="/etc/inetd.conf"

DATE="$BIN_PATH/t_date"

CAT="$BIN_PATH/t_cat"

FIND="$BIN_PATH/t_find"

UNAME="$BIN_PATH/t_uname"

IFCONFIG="$BIN_PATH/t_ifconfig"

HOSTNAME="$BIN_PATH/t_hostname"

LAST="$BIN_PATH/t_last"

W="$BIN_PATH/t_w"

WHO="$BIN_PATH/t_who"

RPCINFO="$BIN_PATH/t_rpcinfo"

PS="$BIN_PATH/t_ps"

RPM="$BIN_PATH/t_rpm"

NETSTAT="$BIN_PATH/t_netstat"

DF="$BIN_PATH/t_df"

MOUNT="$BIN_PATH/t_mount"

LSMOD="$BIN_PATH/t_lsmod"

HOSTID="$BIN_PATH/t_hostid"

MD5SUM="$BIN_PATH/t_md5sum"

LSOF="$BIN_PATH/t_lsof"
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#function to send messages to console

function console {

printf "$1" >&2;

} # console

console "Starting Live Response Script for Linux.\n";

echo "==== Live IR Script v. Linux 2.6 ===="

echo ""

console "- storing system date..\n"

echo "# System Date - Start #"

$DATE

echo "## END ##"; echo ""

## Storing system information

console "- obtaining host ID..\n"

echo "# Hostid #"

HOSTIDSTRING=‘$HOSTID‘

echo $HOSTIDSTRING

echo "## END ##"; echo""

console "- storing hostname..\n"

echo "# Hostname #"

$HOSTNAME

echo "## END ##"; echo ""

console "- storing system ID (uname)..\n"

echo "# Uname -a #"

$UNAME -a

echo "## END ##";echo""

console "- storing IP configuration..\n"

echo "# IP Configuration #"

$IFCONFIG -a

echo "## END ##";echo""

console "- storing uptime and w information..\n"

echo "# w and uptime #"

$W

echo "## END ##";echo""

console "- storing logged in users (who)..\n"

echo "# who #"

$WHO

echo "## END ##";echo""

console "- storing wtmpx via \"last\"..\n"

echo "# last #"

$LAST

echo "## END ##";echo""

console "- storing netstat..\n"

echo "# netstat -an #"

100



$NETSTAT -an

echo "## END ##";echo""

console "- storing routing table..\n"

echo "# netstat -rn #"

$NETSTAT -rn

echo "## END ##";echo""

console "- storing RPC information..\n"

echo "# rpcinfo #"

$RPCINFO -p 127.0.0.1

echo "## END ##";echo""

console "- storing process list (ps -eaf)..\n"

echo "# ps -eaf #"

$PS -eaf

echo "## END ##";echo""

console "- storing list of all files.. This is going to take a while.\n"

echo "# File Listings #"

(echo "permissions;access date;access time;modification date;modification time;

➥change date;change time;user ownership;group ownership;file size;file name";

➥$FIND $FIND_PATH $FIND_FLAGS)

echo ""

echo "## END ##";echo""

console "Done. (finally)\n"

console "- storing MD5 sums for all files.. This is going to take a while.\n"

echo "# MD5 sums #"

$FIND $FIND_PATH -xdev -type f -exec $MD5SUM {} \;

echo ""

echo "## END ##";echo""

console "Done. (finally)\n"

console "- storing lsof information..\n"

echo "# lsof #"

$LSOF

echo "## END ##";echo""

## Store files for further review

console "- storing file (/etc/passwd)\n"

echo "# /etc/passwd #"

$CAT $PASSWD_PATH

echo "## END ##";echo""

console "- storing file (/etc/group)\n"

echo "# /etc/group #"

$CAT $GROUP_PATH

echo "## END ##";echo""

console "- storing file (/etc/inetd.conf)\n"

echo "# /etc/inetd.conf #"
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$CAT $INETD_PATH

echo "## END ##";echo""

## OS Configuration and Patches

console "- storing Linux package information..\n"

echo "# RPM #"

$RPM -qa

echo "## END ##";echo""

console "- storing kernel module information..\n"

echo "# lsmod #"

$LSMOD

echo "## END ##";echo""

## File System information

console "- storing list of mounted file systems..\n"

echo "# mount #"

$MOUNT

echo "## END ##";echo""

console "- storing file system utilization stats..\n"

echo "# df -k #"

$DF -k

echo "## END ##";echo""

console "- storing system date - shutting down the script\n"

echo "# System Date - end #"

$DATE

echo "## END ##";echo""

echo "==== Live Response Script - Linux ===="

console "## Job Complete\n"

echo""

A.5 ir-script-windows.bat

@echo off

echo ==== Live IR Script for Windows ====

echo

set IRPATH=%1:\windows_live_response

echo **********************

echo ***** Start Date *****

echo. | date

echo **********************

echo ***** Start Time *****

echo. | time

echo **********************

echo ***** netstat -an ****
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%IRPATH%\t_netstat -an

echo **********************

echo ***** netstat -rn ****

%IRPATH%\t_netstat.exe -rn

echo **********************

echo ***** FPort **********

%IRPATH%\t_fport.exe

echo **********************

echo ***** pslist *********

%IRPATH%\t_pslist.exe

echo **********************

echo ***** nbtstat -c *****

%IRPATH%\t_nbtstat.exe -c

echo **********************

echo ***** psloggedon *****

%IRPATH%\t_psloggedon.exe

echo **********************

echo ***** File Times *****

echo permissions;access date;access time;modification date;modification time;

➥change date;change time; user ownership;group ownership;file size;file name

for %%d in (c d e f g h i j k l m n o p q r s t u v w x y z) do IF EXIST %%d:\

➥%IRPATH%\t_find.exe %%d:\ -printf "%%m;%%Ax;%%AT;%%Tx;%%TT;%%Cx;%%CT;

➥%%U;%%G;%%s;%%p"\n

echo **********************

echo **********************

echo ***** auditpol *******

%IRPATH%\t_auditpol.exe

echo **********************

echo ***** ntlast *********

%IRPATH%\t_ntlast.exe *****

echo **********************************

echo ***** Security Event Log *********

%IRPATH%\t_psloglist.exe -s -x security

echo *************************************

echo ***** Application Event Log *********

%IRPATH%\t_psloglist.exe -s -x application

echo ********************************

echo ***** System Event Log *********

%IRPATH%\t_psloglist.exe -s -x system

echo **********************

echo ***** psinfo *********

%IRPATH%\t_psinfo.exe -h -s -d
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echo **********************

echo ***** psfile *********

%IRPATH%\t_psfile.exe

echo **********************

echo ***** psservice ******

%IRPATH%\t_psservice.exe

echo **********************

echo ***** at *************

%IRPATH%\t_at.exe

echo **********************

echo ***** pwdump6 ********

%IRPATH%\t_pwdump.exe

echo **********************

echo ***** regdmp *********

%IRPATH%\t_regdmp.exe

echo **********************

echo ***** IP Config ******

%IRPATH%\t_ipconfig.exe /all

echo **********************

echo ***** End Time *******

echo. | time

echo **********************

echo ***** End Date *******

echo. | date

echo ==== Live IR Script for Windows ====

echo ## Job Complete

echo

A.6 getmetadata-live.pl

### getmetadata-live.pl ###

#!./bin/t_perl

print

"MD5|Filename|Inode|Mode|ModeString|User|Group|Size|ATime|ADate|MTime|

➥ MDate|CTime|CDate\n";

while (<STDIN>) {

chomp;

@macrow = split( /\|/, $_ );

if (@macrow[1] =~ m/\(deleted-realloc\)/g) {

$md5sum = ’’;

} else {

$md5sum = ‘./bin/t_icat -f $ARGV[0] $ARGV[1] @macrow[3] |
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➥./bin/t_md5sum -b‘;

$md5sum =~ m/^(\S+)\s+.*$/g;

$md5sum = $1;

}

@atime = localtime( @macrow[11] );

@mtime = localtime( @macrow[12] );

@ctime = localtime( @macrow[13] );

@atime[4] += 1;

@atime[5] += 1900;

@mtime[4] += 1;

@mtime[5] += 1900;

@ctime[4] += 1;

@ctime[5] += 1900;

$atimeasc = sprintf("%02d:%02d:%02d", @atime[2], @atime[1], @atime[0]);

$adateasc = sprintf("%02d-%02d-%d", @atime[4], @atime[3], @atime[5]);

$mtimeasc = sprintf("%02d:%02d:%02d", @mtime[2], @mtime[1], @mtime[0]);

$mdateasc = sprintf("%02d-%02d-%d", @mtime[4], @mtime[3], @mtime[5]);

$ctimeasc = sprintf("%02d:%02d:%02d", @ctime[2], @ctime[1], @ctime[0]);

$cdateasc = sprintf("%02d-%02d-%d", @ctime[4], @ctime[3], @ctime[5]);

print

"$md5sum|@macrow[1]|@macrow[3]|@macrow[4]|@macrow[5]|@macrow[7]|@macrow[8]|

➥ @macrow[10]|$atimeasc|$adateasc|$mtimeasc|$mdateasc|$ctimeasc|$cdateasc\n";

}
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