
Betriebssysteme
Vorlesung im Herbstsemester 2008

Universität Mannheim

Kapitel 6a:
Hardware and Thread Synchronization in ULIX

Felix C. Freiling

Lehrstuhl für Praktische Informatik 1

Universität Mannheim

(Diese Folien sind nicht Teil des Basiskurses)

Be
wa
re
of
so
me

Ge
rm
an
 sl
ide
s!

2

Overview

• Critical sections and mutual exclusion

• Hardware Synchronization and Spin Locks

• Semaphores

• Implementation of Semaphores

• Synchronizing the Kernel

• User Level Semaphores

3

Critical Sections

• Critical section: a sequence of instructions of a
program that accesses shared resources

• Mutual exclusion: at any time there is at most one
thread in its critical section

• Critical sections are preceded by an entry protocol
and succeeded by an exit protocol

• Notation (MUTEX = shorthand for mutual exclusion):

– Entry protocol: ENTER_MUTEX

– Exit protocol: EXIT_MUTEX

4

Three Abstraction Levels

• Entry and exit protocol are implemented
differently on different levels of abstraction

– Hardware level

– Kernel level

– User level

• We start with hardware level

5

Hardware Synchronization

• Synchronization at the lowest (hardware) level
– Interrupt masking

– For multiprocessors, additionally spin lock

• For spin lock we need a special hardware instruction

• In general:
ENTER_MUTEX =

<disable interrupts>

<spin lock>

EXIT_MUTEX =

<give back lock>

<enable interrupts>

6

Hardware Synchronization in ULIX

• Disabling interrupts is done by interrupt masking
– IER register in CPU, stores the highest allowed interrupt
level

– Interrupts above and including level 5 cannot be masked

• Disable interrupts could be implemented as
move byte IER, #7

7

Enabling Interrupts

• When we re-enable interrupts, which value should we
assign IER?

• We need to remember previous interrupt level

<disable interrupts>=

push byte IER // push IER to system stack

move byte IER, #7

<enable interrupts>=

pop byte IER

• Does an interrupt between push IER and move do
any harm?

8

Spin Locks

• Use special instruction SWAP of ULIX CPU
– Example: swap int r0, r1

• Use global flag at symbolic address FLAG
– Value 0: lock is free

– Value 1: lock is taken

<spin lock>=

SPIN: swap byte r0, FLAG

jnz SPIN

<give back lock>=

move byte FLAG, #0

9

Semaphore Semantics

• Assume semaphore S is initialized with k

• Then operations P and V on S have the following
meaning:
– P blocks in case exactly k threads have passed P without
passing V

– V deblocks a thread which is blocked at P in case such a
thread exists

• For k=1, P and V can be used to implement
ENTER_MUTEX and EXIT_MUTEX at a certain level of
abstraction
– Semaphores “use” blocking instead of busy waiting

10

Semaphores at Hardware Level?

• Can we use semaphores to implement low level
synchronization?
– Instead of turning off interrupts and busy waiting?

• Semaphores themselves contain critical sections (as
we will see)
– These critical sections cannot be implemented with
semaphores

• Hardware synchronization is the only form of
synchronization that does not use/need critical
sections itself
– Used to bootstrap synchronization abstractions bottom up

11

Semaphores in ULIX

• ULIX offers kernel level semaphores and user
level semaphores

– Operations prefixed with “kl_...” and “ul_...”

• Both have a similar structure

– Kernel level semaphores use hardware
synchronization to implement their critical sections

– User level semaphores use kernel level
semaphores to implement their critical sections

• Look at kernel level semaphores first

12

Semaphore Structure

13

Operation P

14

Operation V

15

Semaphore Table

16

Getting a New Semaphore

17

Releasing a Semaphore

18

Semaphores and Critical Sections

• Semaphores themselves contain critical sections

– Two threads T1 and T2

– Both invoke kl_P on same semaphore initialized with 1

– T1 interrupted after decrementing counter (before checking)

– T2 decrements and checks (blocks)

– Control returns to T1

– T1 also blocks (since counter is below 0)

• Critical sections should be declared using
ENTER_MUTEX and EXIT_MUTEX

– Implemented with hardware mechanisms

19

Semaphores in Context

• Semaphore operations are used in system
calls

– System calls (interrupt handlers) can also be
regarded as critical sections

– ENTER/EXIT_MUTEX everywhere

20

ENTER/EXIT_MUTEX Where?

• Critical sections should be declared in the
kernel consistently

– Either all system calls are critical sections or all
calls from system calls are critical sections or ...

• Two possible forms:

– Strict kernel synchronization: entire kernel is a
(big) critical section

– Concurrent kernel synchronization: only parts of
kernel code are critical sections

21

Strict Kernel Synchronization

• Critical section begins as soon as kernel mode is
entered

– Through a system call or asynchronous interrupts

• System calls always run to completion (are not
interrupted)

• On multiprocessors, only one CPU can be in kernel
mode at the same time

• Conceptual simplicity:

– Mutual exclusion achieved (easy to see and enforce)

• Not very efficient

22

Concurrent Kernel Synchronization

• Critical sections should be as short as possible to
enable concurrency

• Only declare those parts of the code as critical
sections that access shared data structures

• Example: only functions on the level of the dispatcher
are critical sections

• Much more efficient, but

– much harder to program correctly

– system stack can become pretty messy

23

Strict vs. Concurrent Synchronization

24

User Level Semaphores

• Implemented for user level threads (in the
threadspackage)

25

Implementation

• Implementation is copied from kernel level

– Structure containing counter and a blocked queue (of user
level threads)

• Operation P:

– Check counter

– If below 0, block on queue and assign

• Operation V

– Deblock and increase counter

• Use dispatcher operations of threads package!

26

Kernel vs. User Level

27

Synchronization Hierarchy

• High level: user level semaphores

– Uses middle level as implementation

• Middle level: kernel level semaphores

– Uses low level as implementation

• Low level: interrupt masking and spin locks

28

Summary

• Critical sections and mutual exclusion

• Hardware Synchronization and Spin Locks

• Semaphores

• Implementation of Semaphores

• Synchronizing the Kernel

• User Level Semaphores

