Betriebssysteme

Vorlesung im Herbstsemester 2008
Universitat Mannheim

Kapitel 6a:
Hardware and Thread Synchronization in ULIX

Felix C. Freiling
Lehrstuhl fiir Praktische Informatik 1
Universitat Mannheim

(Diese Folien sind nicht Teil des Basiskurses)

Overview

Critical sections and mutual exclusion
Hardware Synchronization and Spin Locks
Semaphores

Implementation of Semaphores
Synchronizing the Kernel

User Level Semaphores

Critical Sections

Critical section: a sequence of instructions of a
program that accesses shared resources

Mutual exclusion: at any time there is at most one
thread in its critical section

Critical sections are preceded by an entry protocol
and succeeded by an exit protocol

Notation (MUTEX = shorthand for mutual exclusion):
— Entry protocol: ENTER_MUTEX
— Exit protocol: EXIT_MUTEX

Three Abstraction Levels

e Entry and exit protocol are implemented
differently on different levels of abstraction
— Hardware leve
— Kernel level
— User level

e \We start with hardware level

Hardware Synchronization

e Synchronization at the lowest (hardware) level
— Interrupt masking
— For multiprocessors, additionally spin lock

e For spin lock we need a special hardware instruction

e In general:
ENTER MUTEX =
<disable interrupts>
<spin lock>
EXIT MUTEX =
<give back lock>
<enable interrupts>

Hardware Synchronization in ULIX

number | class/example

none

TRAP

timer interrupt

I/O interrupt

MMU interrupt (page fault)

division by zero (non-maskable)

basic protection violation (non-maskable)

invalid machine instruction encoding (non-maskable)

=

=1 S OV = LS I e

Table 2.1: Interrupt levels of the ULIX hardware.

e Disabling interrupts is done by interrupt masking

- IIER Iregister in CPU, stores the highest allowed interrupt
eve

— Interrupts above and including level 5 cannot be masked
e Disable interrupts could be implemented as
move byte IER, #7

Enabling Interrupts

When we re-enable interrupts, which value should we
assign IER?

We need to remember previous interrupt level

<disable interrupts>=
push byte IER // push IER to system stack
move byte IER, #7

<enable interrupts>=
pop byte IER

Does an interrupt between push IER and move do
any harm?

Spin Locks

e Use special instruction SWAP of ULIX CPU
— Example: swap int r0, rl

e Use global flag at symbolic address FLAG
— Value 0: lock is free
— Value 1: lock is taken

o

<spin lock>= moce bgle TP, 1
SPIN: swap byte r0, FLAG

jnz SPIN — Jux = A uek aoo

£ rEE L gt sPiM
<give back lock>=

move byte FLAG, #0

Semaphore Semantics

e Assume semaphore S is initialized with k
e Then operations P and V on S have the following
meaning:

— P blocks in case exactly k threads have passed P without
passing V

— V deblocks a thread which is blocked at P in case such a
thread exists

e For k=1, P and V can be used to implement
ENTER_MUTEX and EXIT_MUTEX at a certain level of
abstraction

— Semaphores “use” blocking instead of busy waiting

Semaphores at Hardware Level?

e (Can we use semaphores to implement low level
synchronization?
— Instead of turning off interrupts and busy waiting?

e Semaphores themselves contain critical sections (as
we will see)
— These critical sections cannot be implemented with

semaphores

e Hardware synchronization is the only form of
synchronization that does not use/need critical
sections itself
— Used to bootstrap synchronization abstractions bottom up

10

Semaphores in ULIX

o ULIX offers kernel level semaphores and user
level semaphores
— Operations prefixed with “kl_...” and “ul_...”

e Both have a similar structure

— Kernel level semaphores use hardware
synchronization to implement their critical sections

— User level semaphores use kernel level
semaphores to implement their critical sections

e Look at kernel level semaphores first

11

Semaphore Structure

(kernel declarations 34a)+= (14b) <«130d 146b>
struct kl_semaphore {
int counter;
blocked_queue bq;
(more k1_semaphore entries 147d) // uninteresting implementation details

}

(kernel declarations 3da)4=
typedef kl_semaphore_idhint;
\ -
JWS\S\A‘A
(kernel declarations 34a)+=
kl_semaphore_id new_kl_semaphore(int k) ;
void release_kl_semaphore(semaphore_id s);

12

Operation P

(kernel functions 110a)+= (14b) <135
void k1_P(kl_semaphore_id sid) {
kl_semaphore sem = (semaphore structure with identifier sid 148a);

sem.counter = sem.counter - 1;
if (sem.counter < 0) {
block(sem.bq) ;) T T2 73
assign() ; kot Wt Ston [%)
}
} fo f0¢) Jut)
femetr ~ = {M .
blole
Llode

13

Operation V

(kernel functions 110a)+= (14b) <146d
void k1_V(kl_semaphore_id sid) {
kl_semaphore sem = (semaphore structure with identifier sid 148a);
if (sem.counter < 0) {
deblock (front _of _blocked_queue(bq), &bq);
}

sem.counter = sem.counter + 1;

14

Semaphore Table

(kernel declarations 34a)+= (14db) «146c 14Tcp
k1 _semaphore kl_semaphore_table [MAX_SEMAPHORES] :

Uses MAX_SEMAPHORES 147c.

There’s a maximum number of semaphores that can be allocated in the kernel.

(kernel declarations 34a)4+= (14b) «147b
#define MAX_SEMAPHORES 32

Defines:
MAX_SEMAPHORES, used in chunks 147 and 148&c.

Since both used and unused semaphores are held in a table. we need additional information to
distinguish both. So each semaphore has a counter and a queue, but it also has an additional field
storing the semaphore state. The value false means the semaphore entry is free.

{more kl_semaphore entries 147d)= (146a)
boolean used;

(semaphore structure with identifier sid 148a)=

k1l _semaphore_table[sid]
15

Getting a New Semaphore

(kernel global variables 108c)+=
kl _semaphore_id next_kl_semaphore = O;

(kernel functions 110a)+= (14b) <147a 148d>
k1l _semaphore_id new_kl_semaphore(int k) {

int check = MAX_SEMAPHORES;

while (kl_semaphore_table[next_kl_semaphore].used == true) {
next_kl_semaphore = (next_kl_semaphore + 1) % MAX_SEMAPHORES;
check = check - 1;
if (check <= 0) {

return -1;

}

}

k1l _semaphore_table[next_kl_semaphore] .used = true;

k1l _semaphore_table[next_kl_semaphore].counter = k;
initialize_blocked_queue (kl_semaphore_table[next_kl_semaphore] .bq) ;
return next_kl_semaphore;

Releasing a Semaphore

(kernel functions 110a)+= (14b) «
void release_kl_semaphore(semaphore_id s) {
k1l _semaphore_table[s].used = false;
while (front_of_blocked_queue (kl_semaphore_table[s].bqg) != 0) {
thread_id t = front_of_blocked_queue(kl_semaphore_table[s].bq);
remove_from_blocked_queue(t, kl_semaphore_table[s].bql);
add_to_ready_queue(t) ;
}
}

17

Semaphores and Critical Sections

Semaphores themselves contain critical sections

— Two threads T1 and T2

— Both invoke kl_P on same semaphore initialized with 1

— T1 interrupted after decrementing counter (before checking)
— T2 decrements and checks (blocks)

— Control returns to T1

— T1 also blocks (since counter is below 0)

e Critical sections should be declared using
ENTER_MUTEX and EXIT_MUTEX

— Implemented with hardware mechanisms

18

Semaphores in Context

e Semaphore operations are used in system
calls

— System calls (interrupt handlers) can also be
regarded as critical sections

?L — ENTER/EXIT_MUTEX everywhere

Mawsp M0 Mdh(’m“
g\dS{QAC“a ‘A‘»‘ﬂu‘(/ M""‘Th off

ﬂ ENTER - A %:2 4 _— Eml-crrv‘-l-s "I‘F —r ;‘»-.(uu
AL P ()

. R loouw:.l/(’f
ExiTorwTgd > WE O T s
RTI

Ad 7 S iwongls ofF —— L spn ok

U CN"Cdl SMITEX

o ——> &
N/XW < .

ENTER/EXIT_MUTEX Where?

e Critical sections should be declared in the
kernel consistently
— Either all system calls are critical sections or all
calls from system calls are critical sections or ...
e Two possible forms:

— Strict kernel synchronization: entire kernel is a
(big) critical section

— Concurrent kernel synchronization: only parts of
kernel code are critical sections

20

Strict Kernel Synchronization

Critical section begins as soon as kernel mode is
entered

— Through a system call or asynchronous interrupts

System calls always run to completion (are not
interrupted)

On multiprocessors, only one CPU can be in kernel
mode at the same time

Conceptual simplicity:
— Mutual exclusion achieved (easy to see and enforce)
Not very efficient

21

Concurrent Kernel Synchronization

Critical sections should be as short as possible to
enable concurrency

Only declare those parts of the code as critical
sections that access shared data structures

Example: only functions on the level of the dispatcher
are critical sections

Much more efficient, but
— much harder to program correctly
— system stack can become pretty messy

22

Strict vs. Concurrent Synchronization

— — - — — —

i g - == = T X
&S T :. du’t&’**"(“" :_\

—-—— = = ~—t

¢sweurfol b

23

User Level Semaphores

e Implemented for user level threads (in the
threadspackage)

L] L w

[Qutos WP WV M"”‘&“&j Uses

— ———

NS— e —

Sy e

24

Implementation

Implementation is copied from kernel level

— Structure containing counter and a blocked queue (of user
level threads)

Operation P:
— Check counter
— If below 0, block on queue and assign

Operation V
— Deblock and increase counter

Use dispatcher operations of threads package!

25

Kernel vs. User Level

°
'offu,%w

S I I 0

N/ Wl - o

Lﬂ/r wl_? wl 7[ooy
U boddd KLTe
\ M\ —

ot x\! pLo%h

QL _San ke (2)

ENZYL B :
PR AN g (moles)

EXL'C_._HJJ7EB(-
LtV ()

VROV
S’ly J—

26

Synchronization Hierarchy

e High level: user level semaphores
— Uses middle level as implementation

o Middle level: kernel level semaphores
— Uses low level as implementation

e Low level: interrupt masking and spin locks

27

Summary

Critical sections and mutual exclusion
Hardware Synchronization and Spin Locks
Semaphores

Implementation of Semaphores
Synchronizing the Kernel

User Level Semaphores

28

