
Betriebssysteme
Vorlesung im Herbstsemester 2008

Universität Mannheim

Kapitel 5c:
System Calls and

Signals (User Level Interrupts) in ULIX

Felix C. Freiling

Lehrstuhl für Praktische Informatik 1

Universität Mannheim

(Diese Folien sind nicht Teil des Basiskurses)

Be
wa
re
of
so
me

Ge
rm
an
 sl
ide
s!

2

Overview

• System calls

• Interrupt handlers

• Signals (user level interrupts)

• Implementation of signals

3

User Space and Kernel Space

• User programs run in user mode

• Operating system code runs in system mode
– No user code should run in system mode
(protection!)

• User programs must be able to use services
of the operating system
– Examples: Start a new thread, create a
semaphore

• System calls allow controlled transition from
user mode to system mode

4

Reference Monitor

• Reference monitors offer controlled access to
resources

– Operating systems should be implemented as
reference monitors

– If check fails, access to resources is not granted

5

System Calls

• System calls define the interface of the
operating system (seen as a reference
monitor)

– A system call is a controlled call of an operating
system function

• System calls have a well-defined interface

– Documented in “manual pages”

– Can be called conveniently from programming
languages

6

man fork
int main(void) {

fork();

}

7

Are System Calls C Functions?

• Compiler translates C program to executable
machine code

• How is system call translated?

• Must do parameter checking

– Must be done in system mode (protection!)

• Must perform transition to system mode

– Only possible through interrupt

8

Low Level System Calling

• Hypothetical system call int foo(int x)

– Assumption: Parameter x available in register R0

– Convention: Return parameter should be in R0 too
after call

• Possible realization:
– Pass parameter to kernel via user stack

– Pass id of system call to user stack

– Trap into operating system

– Retrieve return parameter from user stack to
register

9

Machine Instructions

• Assembly code (ULIX assembler):

push r0 // parameter on stack

push FOO // id of foo system call

trap 1 // trap interrupt level

pop r0 // retrieve return param.

10

System Calls as Library Functions

• Calling of TRAP is cumbersome

• Rather use pre-defined library functions with
clean C function call interface:
int foo(int x) {

// some magic with TRAP etc.

}

• Handling of parameters dependent on C
conventions

11

C Calling Conventions

• Depends on C compiler and architecture

• ULIX style:
– Push parameters to stack in reverse order

– Then jump to subroutine

– Return parameter is in register R0

• Example:
– void bar(int a, b, c, d) { ... }

• Leads to:
– push d

– push c

– push b

– push a

– jsr bar

– // return parameter is now in R0

• Caller pushes to stack, callee pops stack and prepares R0

12

Calling a System Call

13

Comments

1. Call local library routine with parameters

2. Library routine prepared parameters (no check)

3. Calls TRAP

4. TRAP interrupt handler multiplexes different system
calls

5. Checks parameters

6. Performs functionality

7. Prepared return values

8. Calls RTI

9. Prepares return values according to C conventions

14

Overview

• System calls

• Interrupt handlers

• Signals (user level interrupts)

• Implementation of signals

15

Interrupt Handlers in ULIX

• Interrupt handlers are “normal” assembler
subroutines
– Parameter passing via user stack

– Return value via R0

• Default interrupt handler: panic
– Calls undocumented ULIX machine instruction
dump

– Dumps processor context to the screen
• Easy to implement in an emulator

• Much more complicated in practice

16

Handlers

• Level 1: multiplex system calls

• Level 2: resign, assign

• Level 3: deblock thread waiting for DMA

• Level 4: handle page fault

• Level 5: terminate KLT (or dump?)

• Level 6: terminate KLT (or dump?)

• Level 7: dump

• All other (249) handlers default to panic

17

Overview

• System calls

• Interrupt handlers

• Signals (user level interrupts)

• Implementation of signals

18

Interrupts and User Space

• Interrupts and interrupt handlers happen in kernel
space

– Predefined functionality, carefully prepared

• Interrupts are transparent to user programs

– System calls are like function calls, even if DMA happens
(thread blocks)

• Sometimes we need possibility to execute functions
“asynchronously” in user programs

• Example: Thread A wants to terminate thread B, but
allow B to perform cleanup

19

Signals (User Level Interrupts)

• Idea:

– Different signal levels (0-7 in ULIX)

– Threads can send other threads signals at a certain level

– Threads can register signal handlers (C functions) for certain
signal levels

– Threads can request periodic signals for themselves

• System calls:
– register_signal(int level, void* handler)

– send_signal(int tid, int level)

– periodic_signal(int level, int millis)

20

Example

• User level threads package

• Periodic signal can “simulate” timer interrupt

21

Overview

• System calls

• Interrupt handlers

• Signals (user level interrupts)

• Implementation of signals

22

Signals vs. Interrupts

• High level concepts implemented using low
level concepts

• (High level) signals must somehow be tied to
(low level) interrupts

– Example: periodic signal implemented using timer
unit

• Problem: Signal handler can only be called
when signalled thread is on CPU

– Must invoke signal handler in a “deferred” manner

23

Signal Bits and Signal Table

• Idea: extend TCB with
– signal bits (one for each signal level)

– table of function addresses (signal table, one function
address per level)

• When a signal handler is registered, store address in
signal table

• When a signal is sent to thread, set the appropriate
bit

• When a thread is scheduled, check for uncalled signal
handlers before control passes back to user program
of that thread

24

Example

25

Discussion

• Note that user program and signal handlers
are executed in user mode

• There is no real-time guarantee on execution
of signal handlers

– Depends on when thread is scheduled again

26

Summary

• System calls

• Interrupt handlers

• Signals (user level interrupts)

• Implementation of signals

• Nothing implemented yet ...

