
Betriebssysteme
Vorlesung im Herbstsemester 2008

Universität Mannheim

Kapitel 4a: Virtual Memory in ULIX

Felix C. Freiling

Lehrstuhl für Praktische Informatik 1

Universität Mannheim

(Diese Folien sind nicht Teil des Basiskurses)

Be
wa
re
of 
so
me

Ge
rm
an
 sl
ide
s!



2

Overview

• Main memory as cache

• Page descriptors and frame descriptors

• Page allocation at system startup

• Page replacement

– FIFO

– Second chance

– Clock

– Third chance



3

ULIX Virtual Memory: 
Design Principles

• Every process will have its own virtual memory
– Own page table tree

• Pages are stored in page frames
– Pages can be locked down

– Locked down pages cannot be paged out

• Page replacement is global
– Treats all frames equally, no matter to which virtual memory they 

belong

• ULIX implements demand paging
– No pre-paging (yet)

• Kernel has its own virtual memory
– Accessible from virtual memory of every process (in system mode)



4

Main Memory as Cache



5

Notes

• Physical memory is a cache for virtual 
address spaces (pages) of processes

• Physical memory is completely divided up into 
page frames
– Page frames hold pages of virtual address spaces

– Some pages are locked down into the frame

• Cache management data is also kept in some 
page frame
– Must be locked down



6

Reasons for being Locked Down

• Vital parts of kernel code and data cannot be 
paged out

– Cache management data (frame table)

– Cache management code (interrupt handlers)

• Frames containing memory mapped I/O 
registers or interrupt table

• Frames that are “in transfer” (see later)



7

Overview

• Main memory as cache

• Page descriptors and frame descriptors

• Page allocation at system startup

• Page replacement

– FIFO

– Second chance

– Clock

– Third chance



8

Page Descriptors and Page Tables

• Page tables are arrays of page descriptors

• Page descriptor structure:



9

Frame Descriptors and Frame Table

• There is only one physical memory, so there 
is only one set of page frames
– Entire physical memory is divided into page 

frames of equal size

• Frames act as cache entries, so they need 
management information
– Information is kept in frame descriptors, one per 

frame

• Management information is kept in frame 
table
– Array of frame descriptors



10

State of a Frame

• free = empty and ready for use

• paged = full, some memory paged is 
currently mapped into this frame

• locked = paged, but not allowed to page out

• marked = special state (see later)



11

Frame Descriptor

• Contains 

– frame state

– cache management bits

– protection bits

– “backwards” reference to corresponding page 
descriptor (if page is not free)



12

Sorry, where are these bits kept? 



13

Cache Management Bits

• It the lecture, the frame table was ignored

• Cache management bits (dirty/written, 
referenced) were kept in the page table

• Since these bits are only relevant when a 
page is paged, they can also be stored in the 
frame table
– Only requirement: hardware must find these bits 

are correctly manipulate them

– Example: When a page is written, the written bit 
should be set



14



15

Frame Table



16

Overview

• Main memory as cache

• Page descriptors and frame descriptors

• Page allocation at system startup

• Page replacement

– FIFO

– Second chance

– Clock

– Third chance



17

Layout of Physical Memory

• Physical memory is filled by 
boot loader

• Frames are “spread over”
physical memory

– Those frames that cover critical 
code/data are locked

• This must be encoded in the 
frame table at system startup

– The frame table must be shaped 
so that it matches reality

• Many frames remain free 



18

Frame Table in Memory

• The frame table is kept somewhere in 
memory

• This part of memory must also be locked 
down

• Self-reference: Frame table contains frame 
descriptor of the memory in which it resides



19

Kernel Virtual Memory



20

Discussion

• Kernel runs in its own virtual memory

• Page table of kernel is constructed at system 
startup

• When paging is turned on for the first time, 
this page table becomes active
– Might result in a jump (see exercise)

• Bootstrap code must run in an area of 
transparent paging
– Virtual addresses are equal to physical addresses



21

Bootstrapping Kernel Virtual Memory



22

Overview

• Main memory as cache

• Page descriptors and frame descriptors

• Page allocation at system startup

• Page replacement

– FIFO

– Second chance

– Clock

– Third chance



23

Paging-in a Page

• If kernel needs to page-in a page page, it calls 
replace_page

• Function returns the frame_id of the page frame 
into which page was paged

• Two steps: 
– Find a free frame (page something out if necessary)

– Page-in the requested page



24

Preparing FIFO

• Pointer to next replacement candidate

Check/modify current frame and current_frame



25

Implementing FIFO

• Implemented as a decision table or nested 
switch statement



26

Implementing Second Chance

• Changes to FIFO are highlighted



27

Implementing Clock

• Define additional counter: current_reset

– Points to next frame that should be reset

• Invariant:

(current_reset + d) mod MAX_FRAMES = current_frame

• First step: test frame_table[current_frame]

– If free, finished

– Else manipulate frame_table[current_reset] and 

increment both counters



28

Manipulating 
frame_table[current_reset]



29

Third Chance

• Variant of Second Chance/Clock
– Pages that are referenced get second chance

– Pages that are dirty get third chance

• Try to avoid writing them back to disk

• Can implement it like Second Chance:
– Test written flag

– If true, reset flag and go to next candidate (third 
chance)



30

Implementation Third Chance

• Problem: Resetting the written flag may 
result in a dirty page not being written back 
to disk

• Need to remember, that written flag was 
previously set

– New state of frame: marked



31

Decision Table for Third Chance



32

Summary

• Main memory as cache

• Page descriptors and frame descriptors

• Page allocation at system startup

• Page replacement

– FIFO

– Second chance

– Clock

– Third chance



33

Outlook

• Only 60% implemented

• Not tested, but feels good 

• Challenging and not discussed here: system 
setup/bootstrapping


