EuroSec’13
Prague, Czech Republic

Fast Software Encryption with SIMD

How to speed up symmetric block ciphers
with the AVX/AVX2 instruction set

Johannes Gétzfried, Tilo Miiller

Department of Computer Science
Friedrich-Alexander University of Erlangen-Nuremberg

April 14, 2013

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

Introduction

Outline

@ Introduction

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 2/25

Introduction Motivation

Motivation

@ Encryption is important in today's IT-Security
o Network communication protocols (e.g. HTTP/SSL, VPNs and WiFi)
e Disk encryption

@ Encryption techniques are often mandatory

e Remote connections for controlling machines
e Online banking
e Employees, that work outside their office or travel a lot

@ Performance

e Encryption involves necessarily a performance drawback
o Low-level implementations can achieve a gain in performance
e AESNI only usable for AES but not for different ciphers

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

Background

Outline

© Background
@ Symmetric Ciphers
@ Advanced Vector Extensions
@ Linux Kernel

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 3/25

Background Symmetric Ciphers

Outline

© Background
@ Symmetric Ciphers

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 3/25

Background Symmetric Ciphers

Symmetric Ciphers

%Same Key

Encryption Decryption
\ \
)%) %) =)
plaintext Cipher plaintext

@ Block Ciphers: Serpent, Twofish, Blowfish, Cast-128, Cast-256
@ Modes of operation for block ciphers

e ECB, CBC, CTR, LRW, XTS
o Suitable for parallelization (except CBC encryption mode)

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

Background Symmetric Ciphers

Properties of the ciphers

Encryption and decryption routines are composed of similar rounds
Key sizes between 64 and 512 bits

Block sizes of 64 or 128 bits

Between 12 and 48 rounds

Common operations: substitutions, permutations and key mixing

Operations are usually performed on doublewords (i.e. 32 bits)

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 4 /25

Background Advanced Vector Extensions

Outline

© Background

@ Advanced Vector Extensions

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 5/25

Background

SIMD vs. scalar operations

Advanced Vector Extensions

SIMD = Single Instruction Multiple Data

SIMD Mode Scalar Mode

A7 | A6 | A5 | A4 | A3 | A2

Al AO A
+ +
B7 B6 B5 B4 B3 B2 Bl BO B

A7+B7 [A6+B6|A5+B5 (A4+B4 [A3+B3|A2+B2|A1+B1|A0+B0O

AVX Support
@ Intel Sandy and lvy Bridge CPUs
e AMD Bulldozer CPUs
@ GCC supports AVX at least since version 4.6

@ Linux kernel since version 2.6.30

Johannes Gétzfried, Tilo Miiller (FAU)

FSE with SIMD

April 14, 2013

Background Advanced Vector Extensions

AVX Registers

@ 256 bit wide SIMD registers YMMO to YMM7 or YMM15
o Lower 128 bits correspond to the XMM registers known from SSE

o Different interpretations of the stored data possible:

| | 4x float

| 2x double
[TTT]16xbyte

| | | 8x 16-bit word

[| 4x 32-bit doubleword

| 2x 64-bit quadword

| 1x 128-bit doublequadword

SSE and AVX 128-bit types

AVX 256-bit types
\ | | | | | | | | x float
\ [[[| ax double

Drawback
Integer types only available with 128 bit XMM registers

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

Background Advanced Vector Extensions

AVX Instruction Set

Non-destructive three operand syntax
SSE paddd Y%xmml, %xmm2
AVX vpaddd Y%xmml, %xmm2, %xmm3

Suffixes
b, w, d, q, dq

Instructions
Movement vmovdga, vmovdqu, vbroadcastss,
vmovd, vpextrd, vpinsrd

Arithmetic vpaddd, vpsubd
Logical vpand, vpandn, vpor, vpxor
Shift vpslld, vpsrld, vpslldq, vpsrldq
Shuffle and Pack vpshufd, vpunpckhdq, vpunpckldq

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

Background Advanced Vector Extensions

AV X2

AV X2 Support
@ Haswell microarchitecture (launching market 2013)
@ GCC supports AVX2 since version 4.7
o Testing: Intel Software Development Emulator (SDE)

AVX2 Features
@ Integer instructions are able to work with 256 bit YMM registers
@ Lane concept (in-lane vs. cross-lane instructions)

e New instructions (e.g. vpbroadcastd, vbroadcastil28)

Gather Operation
vpcmpeqd %ymml5, %ymml5, %ymml5
vpgatherdd %ymmi5, 16(%rsi, %ymml, 4), %ymmO

Addresses: %rsi + Yymml[32%i+31:32*%i]*4 + 16 withi=0...

7

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

8 /25

Background Linux Kernel

Outline

© Background

@ Linux Kernel

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 9/25

Background Linux Kernel

Cryptographic API

Five types of transformations
o AEAD, block ciphers, ciphers, compressors and hashes

Synchronous and asynchronous interface

Different Layers of abstraction
(e.g. mode of operation independent of block cipher)

Test module for verification and benchmarks (tcrypt)

No stable APl and bad documentation

Break with the design of the crypto API

Modes of operation have to be reimplemented
= allow block ciphers processing blocks in parallel

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

Implementation

Outline

© Implementation
@ Generic Approach
@ Example: Twofish

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 10 / 25

Implementation Generic Approach

Outline

© Implementation
@ Generic Approach

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 10 / 25

Implementation Generic Approach

AVX Approach

Considerations
@ Leave key schedule untouched
@ Focus on block size of 128 bits and encryption routine

AVX Approach (simplified)
@ Fetch input blocks from memory (two 4-block chunks, e.g. 8 blocks)
@ 4x4 matrix transposition of doublewords with unpack operations
© Replace arithmetic and logical operations with SIMD equivalent

@ Apply inverse transposition and write output blocks back to memory

xmmOE@ xmmO@@EE
xmmlBBE'La_J » xmmlbl‘_s_l@@
(o]) (o] "9 s (]] (o]
s ()] [w]le] e [(2]]

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 10 / 25

Implementation Generic Approach

AV X2 Approach

AVX Limitations
o Complex algebraic operations (e.g. multiplication over GF(28))
@ Table lookups involve GPR <+ SIMD-Register transitions

AV X2 Approach
@ Fetch input blocks from memory (two 8-block chunks, e.g. 16 blocks)
@ Two 4x4 matrix transpositions with the same number of operations
© Replace arithmetic and logical operations with AVX2 equivalent

@ Apply inverse transposition and write output blocks back to memory

AVX2 Improvements
@ Implement table lookups using the gather-Operation (8x32 tables)
@ Data preparation: packed logical right shifts and respective bitmasks

@ Data never leaves the SIMD register

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 11 /25

Implementation Generic Approach

Kernel Integration

Makes the implementations usable for disk encryption

Registration together with modes of operations

For each mode a block cipher is registered
(e.g. cbc(twofish), ecb(serpent))

Our ciphers are registered with a higher priority

Provided as loadable kernel modules with own entry in Kconfig

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

Implementation Example: Twofish

Outline

© Implementation

@ Example: Twofish

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 13 /25

Implementation Example: Twofish

Twofish
Twofish] Pl 120t |)
@ Third best rated finalist nputwhening
in the AES Competition
o Feistel network
@ Block size of 128 bits Lo
o Key sizes of 128, 192
or 256 bits
@ 16 rounds independent 1
of the keysize
@ Four key-dependent I
8x8 S-boxes ok whiening

Ciphertext (128 bits)

o Key whitening

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 13 /25

Implementation Example: Twofish

Reading and Transforming Input Blocks
AVX Implementation for 128 bit Block Ciphers

#define transpose_4x4(x0, x1, x2, x3, t0, ti1,
vpunpckldq x1, x0, t0; \
vpunpckhdq x1, x0, t2; \
vpunpckldq x3, x2, t1; \
vpunpckhdq x3, x2, x3; \
vpunpcklqdq tl, t0, x0; \
vpunpckhqdq t1, t0, x1; \
vpunpcklqdq x3, t2, x2; \
vpunpckhqdq x3, t2, x3;

#define read_blocks(in, x0, x1, x2, x3,
vmovdqu (0*4%*4) (in), x0; \
vmovdqu (1*4%4) (in), x1; \
vmovdqu (2*4*4) (in), x2; \
vmovdqu (3*4%*4) (in), x3; \

transpose_4x4(x0, x1, x2, x3, t0, t1, t2)

leaq (4%4x4) (%rdx), %hrax;

t2) \

t0, t1, t2) \

read_blocks (%rdx, RA1, RB1, RC1, RD1, RKO, RK1, RK2);
read_blocks (%rax, RA2, RB2, RC2, RD2, RKO, RK1, RK2);

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD

April 14, 2013

14 / 25

Implementation

Twofish Table Lookup (1)

AVX Implementation of Twofish

#define G(a,
vmovq
vpsrldq $8,
vmovq
\
lop(t0, ti,
shrq $16,
lop(t0, t1,
shlq $32,
orq
\
lop(tO, t1,
shrq $16,
lop(t0, ti1,
shlq $32,
orq
\
vmovq
vpinsrq $1,

x, t0, t1, t2, t3)
a, RGI1;
a, X3
X, RGI2;

t3, RGI1, RGS1);
RGI1;

t3, RGI1, RGS2);
RGS2;

RGS1, RGS2;

t3, RGI2, RGS1);
RGI2;

t3, RGI2, RGS3);
RGS3;

RGS1, RGS3;
RGS2, x;

RGS3, x, x;

Example: Twofish

P P

P

Johannes Gétzfried, Tilo Miiller (FAU)

FSE with SIMD

April 14, 2013

15 / 25

Implementation Example: Twofish

Twofish Table Lookup (2)

AVX Implementation of Twofish

#define lop(tO0, tl1, t2, t3, src, dst) \
movb src ## bl, RID1b; \
movb src ## bh, RID2b; \
movl t0(CTX, RID1, 4), dst ## d; \
xorl t1(CTX, RID2, 4), dst ## d; \
shrq $16, src; \
movb src ## bl, RID1b; \
movb src ## bh, RID2b; \
xorl t2(CTX, RID1, 4), dst ## d; \
xorl t3(CTX, RID2, 4), dst ## d;

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 16 / 25

Implementation

Twofish Table Lookup

AVX2 Implementation of Twofish

#define G(a, x,
vpand
vpcmpeqd
vpgatherdd
vpsrld $8,
vpand
vpcmpeqd
vpgatherdd
vpxor
vpsrld $16,
vpand
vpcmpeqd
vpgatherdd
vpxor
vpsrld $24,
vpcmpeqd
vpgatherdd
vpxor

t0,

t1, t2, t3) \

RLOW, a, RIDX;
RFULL, RFULL, RFULL;
RFULL, tO(CTX, RIDX,
a, RIDX;

RLOW, RIDX, RIDX;
RFULL, RFULL, RFULL;
RFULL, t1(CTX, RIDX,
RIDX, x, x;

a, RIDX;

RLOW, RIDX, RIDX;
RFULL, RFULL, RFULL;
RFULL, t2(CTX, RIDX,
RIDX, x, x;

a, RIDX;

RFULL, RFULL, RFULL;
RFULL, t3(CTX, RIDX,

RIDX, x,

Example: Twofish

X3

\
\
4), x; \
\
\
\
4), RIDX; \
\
\
\
\
4), RIDX; \
\
\
\
4), RIDX; \

Johannes Gétzfried, Tilo Miiller (FAU)

FSE with SIMD

April 14, 2013

17 / 25

Evaluation

Outline

e Evaluation

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 18 / 25

Evaluation Summary

Summary

@ Measurements were taken on a Intel Core i5-2450M
@ Achieved Speedups with the AVX implementations
Serpent: 6.1%

Twofish: 30.8%

Blowfish: 0.8%

Cast-128: 115.8%

Cast-256: 88.6%

@ AVX2 implementations are suspected to be a lot faster

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 18 / 25

Evaluation Twofish

Twofish Instruction and Timing Results in Userspace

Implementation Instructions Time (s) Speedup (%)

generic 35913728 6.215 -
asm_64 28788575 5.800 7.15
asm_64-3way 34493255 4.714 23.03
avx 28622848 3.605 30.79
avx2 6426624 - -

Userspace Results
@ 3-way implementation provides significant speedup
@ AVX implementation is another 30.8% faster

@ AVX implementation needs less instructions
than all other implementations

@ AVX2 implementation decreases instruction count drastically

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

Evaluation Twofish

Results for Different Modes with Twofish in Kernelspace
256 bit key, 8192 input bytes

uuuuuu

uuuuuu

nnnnnn

nnnnnnn

nnnnnnn

nnnnnn

uuuuu

ccc

Kernelspace Results
@ Speedup remains clearly visible with the different modes

@ CBC encryption is as slow as with the 3-way implementation
but not slower

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 20 / 25

Evaluation Twofish

Results of CBC Decryption for Twofish and AES

256 bit key

300000 - 704
Twofish-3way —+— L \ Twofish-3way —+—
Twofish-AVX - % - - X \ Twofish-AVX - % -
250000 - AES-AESNI - - T 60T N AES-AESNI 3%
AES-ASM —E}- - 5. AES-ASM —-E}-
’ 50 | el
200000 £ S
» &
< = 4o et = L
3 150000 XY
2 3 30t -
s} S -
100000 5 Xommmmmmme X
20 | %
50000
10 ..
* *-
Y e *
0 - - 0 L L L L
0 1024 4096 8192 16 64 256 1024 4096 8192
Input bytes Input bytes

CBC Decryption Results

@ Twofish implementations slower than AES AESNI implementation
but faster than AES assembler implementation

@ Speedup remains approximately constant with increasing input sizes

@ Absolute speed of the AVX implementation is about 24 cycles per byte

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 21 /25

Evaluation Twofish

Twofish Disk Reading Speed Results

Ramdisk (cbc-essiv:sha256)

Kernel Module Disk Speed (MB/s)
aes-x86_64 318.68
aesni-intel 1055.75
twofish-generic 282.15
twofish-x86_64 314.98
twofish-x86_64-3way 390.15
twofish-avx-x86_64 467.49

Disk Reading Results
@ Dimensions remain the same with the device mapper dm-crypt

@ Speedup should have practical impact on disk encryption applications

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 22 /25

Conclusion and Outlook

Outline

© Conclusion and Outlook

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 23 /25

Conclusion and Outlook Conclusion

Conclusion

@ Generic approach to speed up symmetric block ciphers
o Parallel processing of sequenced input blocks
e Particularly efficient in combination with modes of operation
(e.g. ECB, CBQ)
@ AVX variants for five different ciphers
o Taken from the Linux Crypto-API
e Provided as open source kernel patches
e Four of them have been submitted and merged into mainline
@ Implementations with upcoming instruction set AVX2
o Developed on an emulator
o Will first run on CPUs launching market in 2013
@ Performance Benchmarks

o In user and kernel mode and for the case of disk encryption for AVX
o Performance estimation of the AVX2 implementations

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 23 /25

Conclusion and Outlook ~ Outlook

Outlook

o Further Development
o AVX implementations are in active development within kernel tree
e Even more performance gain by rearranging instructions
(e.g. another 14% for Twofish)
o Better performance on AMD Bulldozer CPUs
o AVX2 implementations
e Performance evaluation on real hardware
o Potential kernel integration
@ Speed up different algorithms
o Similar symmetric block ciphers
e Hash algorithms (SHA-3 finalists, SHA-1, SHA-2 or MD5)
@ Port implementations to different architecture

e AMD XOP with packed rotations
o ARM platform with NEON extensions

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013

Thank you for your attention!

Further Information:

[d http://wwwl.cs.fau.de/avx.crypto

Johannes Gétzfried, Tilo Miiller (FAU) FSE with SIMD April 14, 2013 25 /25

http://www1.cs.fau.de/avx.crypto

	Introduction
	Background
	Symmetric Ciphers
	Advanced Vector Extensions
	Linux Kernel

	Implementation
	Generic Approach
	Example: Twofish

	Evaluation
	Conclusion and Outlook

