Fast Software Encryption with SIMD

How to speed up symmetric block ciphers with the AVX/AVX2 instruction set

Johannes Gotzfried Tilo Muller
Department of Computer Science
Friedrich-Alexander University of Erlangen-Nuremberg
{johannes.goetzfried,tilo.mueller }@cs.fau.de

ABSTRACT

Symmetric block ciphers play an important role in today’s
IT security and are generally used by everybody who is
working with electronic devices on a daily basis. We show
a generic approach to speed up block ciphers with SIMD
instructions that are provided on the latest x86 CPUs. With
SIMD, processing multiple input blocks can be parallelized.
To verify the effectiveness of our approach, we exemplarily
provide implementations of five common block ciphers taken
from the Crypto-API of the Linux kernel. We make use of
the Advanced Vector Extensions (AVX), a novel instruction
set that was released by Intel in 2011, and its successor
AVX2, which will become available on mass-market CPUs
in 2013. We give a detailed performance analysis of the
AVX variants, and an estimation for the performance of the
AVX2 variants. Each of our implementations outperforms
the previously fastest one. We submitted the AVX variants
to the Linux kernel and four of them were already merged
into mainline.

Categories and Subject Descriptors

D.4.6 [Software]: Operating Systems—Security and Protec-
tion; E.3 [Datal: Data Encryption

General Terms
Security

Keywords

Streaming SIMD Extensions, Advanced Vector Extensions,
Symmetric Block Ciphers, Performance, Linux Kernel

1. INTRODUCTION

Today, encryption is used (often unconsciously) by every-
body who uses the Internet on a daily basis, e.g., in terms
of network communication protocols like HT'TP/SSL, VPNs
and WiFi that encrypt data against eavesdropping. More-
over, disk encryption is an increasingly popular method to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EUROSEC 13, April 14, 2013 Prague, Czech Republic

Copyright 2013 ACM 978-1-4503-2120-4/13/04 ...$15.00.

protect nomadic laptops against physical loss and theft. Since
more and more employees carry around confidential data on
mobile devices, and work outside their company locations,
they are often forced by company regulations to use disk and
network encryption. In both cases, the performance of sym-
metric block ciphers plays a vital role for the user experience
and work efficiency. Indeed, cryptography must necessarily
involve a performance drawback, but it is an interesting and
important research topic how this performance drawback can
be minimized.

In practice, low-level implementations in assembly lan-
guage can oftentimes outperform the generic C implemen-
tation of a cipher, because high level languages and general
purpose compilers do not support the latest CPU features
well. This is particularly the case for Single Instruction
Multiple Data (SIMD) instruction sets. SIMD instructions
enable programmers to process multiple data with only one
instruction, thereby saving CPU clocks. SIMD instructions
were first introduced by Intel as MMX (Multi Media eXten-
sion) in 1997, and later as SSE (Streaming SIMD Extensions)
in 2001. The state-of-the-art SIMD instruction set is AVX
(Advanced Vector Eztensions) which is available since 2011.
Its successor AVX2 will become available in 2013.

1.1 Contributions

In this paper, we make the following contributions:

e We introduce a generic approach to speed up sym-
metric block ciphers by means of modern SIMD in-
structions. Our approach is based on the concept to
process sequenced input blocks of a cipher in parallel.
Therefore, our approach is particularly efficient in com-
bination with modes of operation like CBC and ECB.
The encryption of single blocks is not (or only slightly)
improved.

e To prove the effectiveness of our approach, we devel-
oped AVX variants for five different ciphers taken from
the Linux Crypto-API (Serpent [3], Twofish [16], Blow-
fish [15], Cast-128 [1], and Cast-256 [2]). We provide
our implementations as open source kernel patches. We
also submitted four of them to the official kernel, and
they were accepted and merged into mainline. Inte-
grating our ciphers into the Linux kernel makes them
available for a wide range of uses, because existing pro-
grams that rely on the Crypto-API can directly benefit
from them (e.g., dm-crypt for disk encryption).

e Since AVX lacks instructions that are necessary to fully
parallelize block ciphers, we additionally implemented

each cipher with the upcoming instruction set AVX2.
These implementations were developed on an emulator,
and will first run on CPUs available on the market in
2013. All implementations are available under an open
source license at http://wwwl.cs.fau.de/avx.crypto.

e We provide performance benchmarks for our AVX im-
plementations in user and in kernel mode, and for the
case of disk encryption. In practice, we achieved per-
formance speedups of up to 115% compared to the
previously fastest C-implementation in the Linux ker-
nel, and up to 30% compared to the fastest assembler
implementation. Moreover, we estimate that our AVX2
implementations are considerably faster than the AVX
variants.

The main performance advantage of our implementation
stems from the fact that we parallelize the processing of
input blocks for different modes of operation.

1.2 Related Work

There are AVX-based implementations of hash primitives,
in particular of the SHA-3 finalists Blake [14] and Grgstl [10].
However, we could not find any such implementation for
a block cipher; during the time of this writing, no AVX-
based implementation of a symmetric block cipher is known
(besides ours). Nevertheless, block ciphers were frequently
considered for high-performance implementations in the past.

In 2012, for example, Gilger, Barnickel and Meyer [6],
demonstrated how to exploit graphic processing units (GPUs)
to speed up symmetric block ciphers. And in 2008, Intel
proposed an instruction set called AESNI [7] which imple-
ments the AES cipher [12] efficiently in hardware. AESNI
is known to cause outstanding performance benchmarks on
CPUs where this instruction set is available (i.e., on Intel’s
Core-i5 and Core-i7 series). A special instruction set to speed
up the performance of a block cipher, however, can only be
expected to be introduced for standards like AES. All re-
maining ciphers, like Serpent and Twofish, can not benefit
from specialized instruction sets but must be implemented
with general purpose instructions such as SIMD.

1.3 Paper Outline

The remainder of this paper is structured as follows: In
Sect. 2, we provide background information about symmetric
block ciphers and SIMD instructions. In Sect. 3, we describe
design choices and technical details behind our implemen-
tations. In Sect. 4, we present performance benchmarks
for AVX, and an estimation of the performance for AVX2.
Finally, in Sect. 5, we conclude with a suggestion of future
research directions.

2. BACKGROUND

We now provide necessary information about symmetric
block ciphers (Sect. 2.1), as well as about SIMD and AVX
(Sect. 2.2).

2.1 Symmetric Block Ciphers

Symmetric block ciphers use a single secret key, which is
typically between 64 and 512 bits, to encrypt a plaintext and
to decrypt the corresponding ciphertext. Unencrypted input
blocks, which are typically of a fixed length between 64 and
128 bits, are scrambled to encrypted output blocks, which are

typically of the same length than the input block. Addition-
ally, all modern ciphers essentially have a similar structure.
They get initialized with the secret key and generate a set
of round keys from the key bits (a.k.a. the key schedule).
In the encryption and decryption routines, the data is then
processed by means of identical rounds. In each round, a
different round key is applied. Common operations of these
rounds are substitutions, permutations and key mixing (e.g.,
with zor). In modern block ciphers, these operations are not
performed on byte level but on larger parts for performance
reasons (often on doublewords, i.e., on 32-bit level). As we
will show, this fact can be well exploited for parallelization.

To process input messages of arbitrary length, symmetric
block ciphers are used in combination with modes of opera-
tion [11] [13]. Modes of operation combine the encryption of
single input blocks in a secure manner. We implemented not
only the block ciphers, but also the modes of operation (in
particular ECB, CBC, CTR, LRW and XTS).

2.2 Advanced Vector Extensions

All basic scalar instructions like add and zor have SIMD
equivalents which can be used to operate on different values
in parallel. Common SIMD instructions operate on large
registers that are, for example, 128 or 256 bits wide. These
instructions can modify separated parts of a register in a
similar fashion at once. For example, instead of adding two
data sets (z1,y1) and (x2, y2) sequentially (by first computing
z1 + x2 and then y1 + y2), SIMD can add both values with a
single instruction. As a consequence, many instructions can
be saved by SIMD provided that an algorithm is suitable for
being parallelized.

AVX [9] extends earlier SIMD instructions like MMX and
SSE with a nondestructive, three-operand syntax. Moreover,
with AVX, sixteen SIMD registers denoted to as YMMO to
YMM15 have been introduced, each comprising 256 bits. The
lower 128 bits of YMM registers correspond to respective 128-
bit wide registers from SSE, denoted to as XMMO to XMM15.
The data stored in a YMM register can be interpreted in
different ways, depending on the instruction that operates
on the register. For example, the data can be interpreted as
“packed doublewords”, meaning as eight 32-bit chunks. Each
32-bit chunk is then processed separately.

One drawback with AVX is that YMM registers as a whole
can only be used in combination with floating point types.
Such a design is meaningful in terms of multimedia appli-
cations, but lacks in support for cryptography. Symmetric
block ciphers are never based on floating point operations
but on packed integer values. That is why AVX-based ci-
pher implementations cannot benefit well from entire 256-bit
registers. Nevertheless, we can benefit from their separation
into “double quadwords” (i.e., into 128-bit chunks), inter-
preted as packed integers. Moreover, we can benefit from
the three-operand syntax of AVX.

AVX2 eliminates the drawback of AVX because it sup-
ports packed integer operations on whole 256-bit registers
(YMMO to YMM15). Another advantage of AVX2 are the
gather instructions. These instructions allow to condition-
ally gather packed doublewords (32-bit) from memory using
signed doublewords as indices, and to merge these values
into a destination register. A gather operation is basically
a scale-index-base addressing operation known from general
purpose instructions, but in addition many indices can be
defined, and many values can be looked up at once. Such

operations are useful to parallelize table lookups. The first
processor generation supporting AVX2 will be the Haswell
architecture whose market launch is expected in 2013 [8].

3. IMPLEMENTATION

‘We now present the design and implementation of the block
ciphers Serpent, Twofish, Blowfish, Cast-128, and Cast-256.
In Sect. 3.1, we present our AVX implementations, and in
Sect. 3.2, we present our AVX2 implementations. We can
not give a detailed description for each cipher, but we rather
focus on describing approaches to parallelize symmetric block
ciphers in general. In Sect. 3.3, we introduce our Linux kernel
patches, including the modes of operation.

3.1 AVX Implementation

We speed up the encryption and decryption routines of a
cipher, but we do not modify the key scheduling part. The
reason is that key scheduling is only executed once and is
therefore not critical for the performance. Moreover, the key
schedule can not (or only slightly) be optimized with our
technique, because we speed up encryption by parallelizing
sequenced input blocks. This technique has no meaningful
counterpart in key scheduling. Encryption and decryption
routines are usually executed on several input blocks at once,
and can therefore be well optimized through parallelization.

In the remainder of this section, we only have a look to
the case of encryption. In symmetric ciphers, the case of
decryption is very similar to the case of encryption because
decryption operations are usually applied in an inverse order.
Moreover, we assume that the block size is 128 bits. Actually,
the ciphers that we implemented have a block size of either
64-bit or 128-bit, but our generic approach does not change
when dealing with a different block size.

Our implementation starts with fetching input blocks from
main memory. We always process eight input blocks at one
go. These input blocks are interpreted as two 4-block chunks,
i.e., we actually parallelize the processing of four blocks.
However, as it is generally a good idea to fetch as many
blocks as possible into SIMD registers at one go (in order
to save the repeated loading of round keys), we read eight
blocks from memory into eight XMM registers of the CPU.
One block exactly fits into one XMM register because both
are 128 bits wide. We then apply a series of unpack opera-
tions on four sequenced registers, which together give a 4x4
matrix transposition of doublewords. Unpack operations do
interleaving of doublewords and doublequadwords, and thus
with reasoned combinations of unpack operations, a matrix
transposition can be achieved. After the unpack operations,
the first XMM register contains the first doubleword of four
sequenced input blocks, the second XMM register contains
the second doubleword of the four sequenced input blocks,
and so forth.

In this initial step, we can save move operations by ex-
ploiting the three-operand syntax of AVX. Using a common
two-operand syntax, we would have to save the destination
registers of the unpack operations because they must be equal
to one of the source registers. But with the AVX instructions,
we can skip this extra move because the destination register
can be different to the source registers.

After we loaded the input blocks into CPU registers, we
can now perform the actual cipher routines for encryption.
Symmetric block ciphers consist of basic arithmetic and
logical operations that are applied on doublewords, like zor,

add, rotate, and shift. The principle of parallelizing these
operations is as follows: We replace each arithmetic and
logical operation from general purpose instructions with an
equivalent from SIMD. Basically, each arithmetic and logical
operation can be replaced with a counterpart from SIMD.
After doing so, a single assembler operation processes four
doublewords of four different blocks in parallel, with only one
packed SIMD instruction instead of processing doublewords
one after another.

With this technique, we can reduce the number of arith-
metic and logical operations by 75%. But we can do even
better. Since eight input blocks are fetched into CPU reg-
isters at one go, we do not need to reload round keys for
every single block, but need to do so only for every eighth
block. By this, we additionally save 87.5% of the move in-
structions. Note that move instructions are costly as they
involve memory.

In addition to the simple arithmetic and logical operations,
symmetric block cipher have complex algebraic operations.
For example, many block ciphers perform multiplications in
the finite field GF(2®). These operations cannot be replaced
by simple SIMD instructions. Therefore, we replace these
operations by table lookups based on precomputed data sets.
With AVX, however, we cannot parallelize table lookups.
Instead, we have to extract single values from SIMD regis-
ters, move them into general purpose registers, do the table
lookups, and finally reinsert them into SIMD registers. Of
course, this is a time consuming task and has a serious impact
on the performance of our implementation. As it turns out,
however, the advantages explained above compensate this
fact.

After modifying the actual cipher, as outlined above, we
need to reverse the initial transformations. Since matrix
transpositions are self-inverse, we can apply the same transfor-
mations as above. Afterwards, the eight sequenced blocks are
written back to memory and then we are basically done. Nev-
ertheless, implementing symmetric block ciphers with SIMD
instructions also involves the modes of operation. Without
an appropriate mode of operation, we cannot process more
than one block in parallel. We come back to this point in
Sect. 3.3.

3.2 AVX2 Implementation

We developed our AVX2 implementations in an emulator
because CPUs supporting this instruction set are not avail-
able. With AVX2, we are (or will be) able to use whole
256-bit wide YMM registers. Therefore, we can process more
blocks in parallel than with AVX, and consequently we can
save even more instructions. Furthermore, with AVX2 we
are able to overcome the performance bottleneck of table
lookups.

Instead of eight input blocks, we can now fetch sixteen
input blocks from memory at one go. This becomes possible
since AVX2 enables us to use integer operations on whole
256-bit wide YMM registers. We first read the input blocks
sequentially from memory into CPU registers, and we then
apply the same input transformation as with AVX (i.e., the
4x4 matrix transposition; see Sect. 3.1).

Note that, instead of applying this transformation to four
256-bit YMM registers, we apply it to the four upper 128-bit
halves and the four lower 128-bit halves separately. Besides
this, the input transformation works with almost the same
instructions as above. After the transformation, YMMO holds

the first doublewords of eight sequenced input blocks, YMM1
holds the second doublewords of eight sequenced input blocks,
and so forth. This means that we basically have the same
situation as we had with AVX. In contrast to that, we just
fetched sixteen input blocks at one go (instead of eight),
and we process eight input blocks in parallel (instead of
four). That is, we reduce the number of required arithmetic
and logical operations by 87.5%, and the number of move
instructions for round keys by 93.75%.

After transforming the input, we perform the actual cipher
routines by means of AVX2. The arithmetic and logical
operations, that we already replaced by AVX equivalents in
Sect. 3.1, can now be replaced by AVX2 equivalents that
work on entire 256-bit YMM registers. As these operations
are packed operations on doublewords, there is no need
for further transformations. The transformations that we
applied initially suffice. An operation now processes eight
doublewords of eight different blocks with a single packed
SIMD instruction, instead of processing just one doubleword
of one block.

In the AVX variant, we dealt with complex algebraic oper-
ations by consulting precomputed lookup tables. However,
we had to move data into general purpose registers to per-
form table lookups. This turned out to be a very costly
task. With AVX2, we can use the gather operation instead.
By using the gather operation, we perform eight lookups
of doublewords in parallel, without the need to move data
into general purpose registers. Our lookup tables have the
format 8 x 32, meaning that the index is 8-bit (byte) and
the result is 32-bit (doubleword). To prepare the data in
SIMD registers in a way that is suitable for byte indices,
we apply packed logical right shifts and respective bitmasks.
The important point is that, although we need instructions to
prepare the indices, the data never leaves the SIMD register.
In other words, we do not have to move any data into general
purpose registers. We do not exactly know how long a gather
operation takes on upcoming CPUs, but alone the fact that
we save several move instructions between SIMD and general
purpose registers, lets us believe that AVX2 implementations
considerably outperform the AVX variants.

At the end, we need to reverse the initial transformations
and write the output blocks back to memory. This works
similar to the case of AVX, i.e., we can use the same matrix
transposition as it is self-inverse.

To sum up, the advantages of AVX2 are twofold: First, we
can process twice as many blocks with AVX2 than with AVX.
Second, we can save many costly move instructions by means
of the gather operation, because all parts of a cipher can now
completely be parallelized. We conjecture that our AVX2
variants will show up a significant gain in performance.

3.3 Kernel Integration

To use our AVX implementations for disk encryption (and
other Crypto-API based applications), we have to integrate
them into the Linux kernel. To fully utilize parallelism
in our implementations, we register our implementations
together with the modes of operation to the Crypto-API.
Inside the Crypto-API, we deal with modes of operation like
CBC and ECB. Of course, that does only work if the mode
of operation supports the parallel processing of sequenced
blocks. This is the case for all five modes of operation that
we implemented, except for the encryption routine of CBC
(whereas decryption works fine for CBC). The reason for this

stems from the structure of CBC which requires us to encrypt
blocks sequentially. Without the result of the previous block,
it is impossible to encrypt the next block. In Sect. 4, this
fact becomes visible in the performance benchmarks.

We provide support for the modes of operation ECB, CBC,
CTR, LRW, and XTS. For each mode of operation, a block
cipher is registered to the Crypto-API of the kernel, e.g.,
cbe(twofish) or ech(serpent). The new block ciphers compete
with older implementations of the same cipher if an algorithm
is requested by name. To make use of the fast variants, new
ciphers are assigned with a higher priority than the older
ciphers. The Linux kernel then automatically chooses the
best cipher module that is available.

For example, the generic C-implementation of Twofish
registers itself to the Crypto-API with the name twofish
and a priority of 100. If someone decides to use Twofish for
disk encryption, the name cbc (twofish) is requested and the
mode cbc is automatically combined with the cipher twofish
by the Crypto-API. We provide both pieces in one registered
entity and name it directly cbc(twofish) with a priority
of 400. Now the Crypto-API chooses our implementation
rather than the C implementation, provided that the user
has loaded our module into the kernel.

For more technical details about our implementations,
regarding both the AVX ciphers and the modes of operation,
please refer to our open source Linux kernel patches. So far,
we submitted kernel patches for the AVX implementations,
but not for the AVX2 implementations. First, there is no
support for AVX2 in the Linux kernel at the time of this
writing, and second, CPUs with AVX2 are not available yet.
However, as the differences between the integration of our
AVX and AVX2 variants are minimal, we can quickly adapt
patches once the hardware and the kernel are ready for them.

We provide our ciphers as loadable kernel modules and
add entries for them in Kconfig (the build system of the
Linux kernel), such that users can decide whether they want
to make use of a new cipher or want to keep the old one.
Compiling our ciphers directly into the Linux kernel (i.e.,
without LKM support) is possible as well.

4. PERFORMANCE BENCHMARKS

We now give performance benchmarks for our AVX and
AVX2 implementations. In Sect. 4.1, we give details about
the performance for AVX, and in Sect. 4.2, we give an esti-
mation about the performance for AVX2. Since there are no
CPUs with AVX2 available, concrete results must be limited
to the case of AVX. For AVX, our tests were performed on
an Intel Core 15-2500 CPU.

4.1 AVX Benchmarks

To give an overview of our results, we list for each AVX-
based implementation the gain in performance compared
to the previously fastest variant in the Linux kernel. Our
AVX-based implementation of Serpent is 6% faster than the
earlier SSE2-based implementation. Twofish is accelerated by
30% in comparison to the earlier assembly implementation,
and Cast-128 is even by 115% faster than any previous
implementation of it in the Linux kernel. For Cast-256, we
get at least a speedup of 88%. For Blowfish, however, we
were only able to achieve a speedup of 0.8%. Blowfish cannot
be well parallelized with AVX because it mainly consists of
table lookups rather than arithmetic and logical operations.
Table lookups can only be parallelized with AVX2.

350000

300000

250000

200000

150000 |-

CPU Cycles

100000 -

50000 -

0

Twofish-3way =
Twofish-AVX

ECB-enc ECB-dec CBC-enc CBC-dec CTR-enc

CTR-dec LRW-enc LRW-dec XTS-enc XTS-dec

Figure 1: Twofish benchmarks for different modes of operation (256-bit key, 8192-byte input).

Implementation Instructions Time (s) Speedup (%)
generic 35913728 6.215 -
asm_64 28788575 5.800 7.15
asm_64-3way 34493255 4.714 23.03
avx 28622848 3.605 30.79
avx2 6426624 - -

Table 1: Twofish benchmarks in user mode.

We now exemplarily show the evaluation of Twofish in
detail, because aside from AES, it is probably the most im-
portant symmetric block cipher today. Furthermore, Twofish
is a good example to point out the differences between AVX
and AVX2.

Table 1 lists benchmarks for five different Twofish imple-
mentations running in user mode. Each of these implemen-
tations is written in 64-bit assembler, except the generic
implementation which is written in C. The instruction count
is based on the encryption of one megabyte of data in ECB
mode; timings were measured while encrypting one giga-
byte of data. The speedup factors are based on the timing
columns and show the gain in performance in comparison to
the previously listed implementation. The first three imple-
mentations (generic, asm_64, and asm_64-3way) have already
been present in the kernel before. Our AVX implementation
is about 30% faster than the 3-way parallel implementation.

Figure 1 shows performance results for different modes
of operation running in kernel mode. The key size is 256-
bit and the input data comprises 8192 bytes. The speedup
between the 3-way and the AVX implementation remains
almost constant with all modes of operation, except for
CBC/encryption.

Figure 2 visualizes the CBC decryption routine for two
implementations of Twofish and AES. The AES implementa-
tions are shown as a reference value. The first graph shows
the number of CPU cycles needed with increasing input size.
The second graph shows the number of CPU cycles per byte
with increasing input size (it has a logarithmic scale). The
speedup of our AVX implementation in comparison to the
3-way variant is clearly visible. Of course, the AESNI-based
implementation of AES beats all others but in the second
graph it becomes visible that Twofish is a very fast cipher.
The assembler implementation of Twofish always outper-
forms that of AES. For small data sizes, it even outperforms
the AESNI-based implementation of AES. Furthermore, the
graph visualizes that the Twofish implementations converge
with increasing data sizes and stay proportional to each other.

Kernel Module Disk Speed (MB/s)

aes-x86_64 318.68
aesni-intel 1055.75
twofish-generic 282.15
twofish-x86_64 314.98
twofish-x86_64-3way 390.15
twofish-avx-x86_64 467.49

Table 2: Disk encryption benchmarks for Twofish
running in kernel mode (cbc-essiv:sha256).

The absolute speed of our AVX implementation is about 24
cycles per byte.

Table 2 shows disk benchmarks of the Twofish implemen-
tations. To encrypt disks, we made use of Linux’ dm-crypt
interface. However, to get accurate results, the measure-
ments were taken within a ramdisk because otherwise the
results fluctuate. The ramdisk had a size of 2.5 GB. The
speedup between the 3-way implementation and our AVX
implementation has practical impact on applications using
our cipher for disk encryption.

4.2 AVX2 Benchmarks

Continuing with the example of Twofish, we want to es-
timate the gain in performance that we can expect from
our AVX2 variant. Since Twofish comprises many table
lookups, we can not fully parallelize it with AVX. With
AVX2, however, we could fully parallelize it as described
above (Sect. 3.2). Hence, we expect a higher performance
speedup with AVX2 than with AVX. Unfortunately, we can-
not give concrete benchmarks because AVX2 will only be
available on upcoming CPUs. Instead, we count the number
of instructions.

Table 1 lists the number of necessary instructions for our
AVX- and AVX2-based implementations for Twofish. En-
crypting one megabyte of data, the AVX variant needs about
4.5 times more instructions than the AVX2 variant. The
AVX2 implementation is consequently expected to be much
faster than its AVX counterpart. Note that we got simi-
lar results for the other ciphers. We always experienced a
huge decrease of the number of instructions, especially if the
AVX implementation makes use of table lookups. Except for
Serpent this has always been the case.

Nevertheless, our AVX2 variants must be considered as
ongoing work, and we can hand in concrete performance
results only in mid 2013.

300000

Twofish-3way —+— P
Twofish-AVX - < - -
250000 AES-AESNI K- - |

AES-ASM —-E}— -

200000

150000

CPU Cycles

100000

50000

0 1024 4096 8192
Input bytes

Figure 2: Twofish and AES benchmarks for

S. CONCLUSIONS AND FUTURE WORK

Although computing power increases steadily, the perfor-
mance of symmetric block ciphers remains an important topic
in an increasingly mobile and networked world. There is a
high demand for fast software encryption with symmetric
block ciphers, e.g., for the case for disk encryption running in
kernel mode, but also for user mode encryption like SSL. In
this paper, we showed a generic approach to speed up sym-
metric block ciphers with SIMD instructions. To verify our
approach, we presented fast implementations of the five block
ciphers Serpent, Twofish, Blowfish, Cast-128 and Cast-256.
With the choice of these algorithms, we have accelerated one
of the most important symmetric block ciphers aside from
AES. As our contribution, we implemented these ciphers
with both AVX and AVX2, and we provided Linux kernel
patches for four of them, which were already merged into
Linux mainline.

Besides analyzing our AVX2 implementation on real hard-
ware in the future, we want to provide AVX and AVX2 vari-
ants for more symmetric block ciphers, e.g., for Camellia [4].
Likewise, we want to provide AVX and AVX2 variants for
hash algorithms (where that has not been done yet). Further-
more, another research direction is to port our ideas to other
platforms, most notably to the ARM platform. Smartphones
and tablet PCs are usually equipped with an ARM processor,
and many of those run a Linux kernel (Android). Since disk
encryption is an important issue for mobile devices, there is a
high demand for fast software encryption on ARM. On ARM,
however, there is no AVX or AVX2 instruction set available.
The SIMD instruction set on ARM is called NEON [5], which
is supported by the Cortex-A series and other ARM CPUs.
Note that on ARM, there exists no AESNI instruction set
like on modern x86 processors. This makes it even interesting
to provide fast SIMD-based implementations of AES.

6. REFERENCES
[1] C. Adams. The CAST-128 Encryption Algorithm, May

1997. http://tools.ietf.org/html/rfc2144.

[2] C. Adams and J. Gilchrist. The CAST-256 Encryption
Algorithm, June 1999.
http://tools.ietf.org/html/rfc2612.

[3] R. Anderson, E. Biham, and L. Knudsen. Serpent: A
Proposal for the Advanced Encryption Standard, Mar.
2000.
http://www.cl.cam.ac.uk/ rjal4d/Papers/serpent.pdf.

CPU Cycles / Byte

[4]

5

6

7

8

9

(10]

(1]

(12]

(13]

(14]

(15]

(16]

70

T "\ Twofish-3way —+—

X \ Twofish-AVX - =< -

60 B Y AES-AESNI -
N 9. AES-ASM —-E1-

50 o~

40

30

20 + %

16 64 256 1024 4096 8192
Input bytes

CBC decryption (256-bit key).

K. Aoki, T. Ichikawa, and M. K. et. al. Specification of
Camellia — a 128-bit Block Cipher, Sept. 2001.
http://info.isl.ntt.co.jp/crypt/
eng/camellia/dl/0lespec.pdf.

ARM Ltd. NEON SIMD Instruction Set, June 2012.
http://www.arm.com/products/processors/
technologies/neon.php.

J. Gilger, J. Barnickel, and U. Meyer. GPU-acceleration
of block ciphers in the OpenSSL cryptographic library.
In D. Gollmann and F. C. Freiling, editors, Information
Security 15th International Conference (ISC), Passau,
Germany, Sept. 2012. Springer Berlin Heidelberg.

Intel Corporation. Intel Advanced Encryption Standard
(AES) New Instructions Set, 323641-001 edition, May
2010.

Intel Corporation. Haswell New Instruction
Descriptions, June 2011.

http://software.intel.com/en-

us/blogs/2011/06/13 /haswell-new-instruction-
descriptions-now-available/.

Intel Corporation. Intel Advanced Vector Extensions
Programming Reference, 319433-011 edition, June 2011.
K. Matusiewicz, M. Schlaffer, and S. S. Thomsen.
Grgstl Implementation Guide, Mar. 2012.
http://www.groestl.info/groestl-implementation-
guide.pdf.

National Institute of Standards and Technology. DES
Modes of Operation, FIPS PUB 81 edition, Dec. 1980.
National Institute of Standards and Technology.
Advanced Encryption Standard (AES), FIPS PUB 197
edition, Nov. 2001.

National Institute of Standards and Technology.
Recommendation for Block Cipher Modes of Operation,
special publication 800-38a edition, Dec. 2001.

S. Neves and J.-P. Aumasson. Implementing BLAKE
with AVX, AVX2, and XOP, Mar. 2012.

B. Schneier. Description of a New Variable-Length Key,
64-Bit Block Cipher (Blowfish). Cambridge Security
Workshop Proceedings, pages 191-204, 1993.
http://www.schneier.com/paper-blowfish-fse.html.

B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall,
and N. Ferguson. Twofish: A 128-Bit Block Cipher,
June 1998.
http://www.schneier.com/paper-twofish-paper.pdf.

