
ARES’13
Regensburg, Germany

Armored
CPU-bound Encryption for Android-driven ARM Devices

Johannes Götzfried, Tilo Müller

Department of Computer Science
Friedrich-Alexander University of Erlangen-Nuremberg

September 4, 2013

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 1 / 24

Motivation Full Disk Encryption

Full Disk Encryption

Full disk encryption (FDE) protects data against physical lost and
theft of the hard drive
It does not protect against remote attacks

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 2 / 24

Motivation Full Disk Encryption

Software Disk Encryption

Current (software-based) FDE solutions do not protect data effectively if
an adversary gains physical access!

RAM CPU HDD
(unencrypted) (encrypted)

←−−−−−−−−−−−−−−−→
en/decrypt

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 3 / 24

Motivation Full Disk Encryption

Coldboot Attack

Disk Encryption Key in RAM
→ Exploit remanence effect of RAM

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 4 / 24

Motivation Encryption on Android

Encryption on Android

Encryption on Android
Since Android 4.0 aka Ice Cream Sandwich (ICS)
Based on dm-crypt (device-mapper and Linux Crypto API)
Only the user partition /data is encrypted
Mode aes-cbc-essiv:sha256 is enforced with 128-bit keys

Of course encryption is possible with all common Linux distributions that
run on ARM, too!

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 5 / 24

Motivation Encryption on Android

Coldboot Attack with Smartphones
FROST: Forensic Recovery Of Scrambled Telephones

And it works with smartphones too!
In this example: Galaxy Nexus

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 6 / 24

Motivation Encryption on Android

Attacks on Main Memory

Memory attacks require target systems to be running or suspended:
Lost and theft of suspended laptops
Confiscation of running servers
But smartphones are always on

Basically all memory contents can be read out
→ We focus on the security of disk encryption keys!

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 7 / 24

Background & Design Security Policy

Armored Security Policy

On ARM we Obstruct the Recovery of Encryption Keys from DRAM:
AES implementation solely on the ARM microprocessor
No sensitive information enters RAM

secret keys
key schedule
all intermediate states

Only processor registers are used as storage

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 8 / 24

Background & Design Existing Solutions

It has already been done ...

... on x86:
FrozenCache
LoopAmnesia
TRESOR
TreVisor

TRESOR
uses the x86 debug registers dr0 to dr3 as key storage
utilizes SSE registers to execute the AES algorithm
implements AES using AES-NI

But Armored is the first CPU-bound encryption for ARM devices!

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 9 / 24

Implementation

Challenge

Security Policy
No valuable information about the AES key or state should be visible in
RAM at any time

→ Implement AES without using RAM at all

no runtime variables
no stack
no heap

→ Armored core is written in pure ARM assembler
→ Misuse registers as key storage

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 10 / 24

Implementation Registers

Key Storage

Mix of breakpoint and watchpoint registers:
Only accessible from kernel space
seldom used by end-users

Memory alignment
instructions are 4 bytes long and 4 bytes aligned
two least significant bits of break- and watchpoint registers are zero

→ divide key-sequence into 16 bit chunks (for simplicity)

store parts to the 16 most significant bits of the registers
4 breakpoint and 4 watchpoint registers: 128 bit
PandaBoard: even 6 breakpoint and 4 watchpoint registers

→ AES-128 is possible, enough for Android’s disk encryption

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 11 / 24

Implementation Registers

Working Register Set

NEON register set as temporary working storage:
SIMD instruction set
supported by many chips, e.g. Cortex-A9
sixteen 128-bit registers, i.e. 256 bytes
64-bit and 128-bit SIMD operations
access on byte granularity

Example
/* register defs */
rstate .qn q0
rhelp .qn q1
rk1 .qn q2
rk1d0 .dn d4
rk1d1 .dn d5

/* xor sbox(key[index]) onto r2 */
.macro ks_box index base rk

vmov.u8 r3 , \rk \() d0[\ index]
ldr r3 , [\base , r3 , lsl #2]
eor r2 , r2 , r3

.endm

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 12 / 24

Implementation Algorithm Details

Gladman’s AES Method

TRESOR implementation relies heavily on AES-NI
AES-128 consists of basically 10 times aesenc

ARM has no AES-NI instruction set
→ use Gladman’s AES Method

based on table lookups
efficient without special hardware

Specialities with ARM assembler
RISC: all instructions are 4 bytes
4-byte base address of table cannot be loaded as immediate value
manually generate constant pool and store pool address to register
get base address register indirect

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 13 / 24

Implementation Algorithm Details

Key Schedule
Conventional AES:

round keys are calculated once and then stored in RAM
(for performance reasons)

Armored:
on-the-fly round key generation
(entire key schedule is too big to be stored inside the CPU)

Example
.macro key_schedule

eor r1 , r1 , r1
ldr r7 , [r12]
add r8 , r7 , #1024
add r9 , r8 , #1024
add r10 , r9 , #1024
ldr r11 , [r12 , #4]
generate_rk rk1 , rk1
generate_rk rk1 , rk2

generate_rk rk2 , rk3
generate_rk rk3 , rk4
generate_rk rk4 , rk5
generate_rk rk5 , rk6
generate_rk rk6 , rk7
generate_rk rk7 , rk8
generate_rk rk8 , rk9
generate_rk rk9 , rk10

.endm

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 14 / 24

Implementation Kernel Patch

Kernel Patch

Armored is designed as a Linux kernel patch for three reasons:
1 dm-crypt and Android FDE uses the Linux Crypto API
2 Problem: unprivileged user access to debug registers
→ Solution: patch ptrace syscall

3 Problem: swapping of registers due to context switches
→ Solution: introduce atomicity

Armored is implemented in kernel space
(currently Linux 3.2)

≈ 1700 LOC
≈ 500 lines assembly code

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 15 / 24

Implementation Kernel Patch

Atomic Sections

OS regularly performs context switches
if Armored is active this context comprises sensitive data
→ run Armored atomically (per 128-bit input block)

Example
void encrypt (struct crypto_tfm *tfm ,

u8 *dst , const u8 *src)
{

unsigned long irq_flags ;

preempt_disable ();
local_irq_save (irq_flags);

encblk_128 (dst , src);

local_irq_restore (irq_flags);
preempt_enable ();

}

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 16 / 24

Evaluation

Development Platform

Main development and testing was
done on a PandaBoard running with
Ubuntu 12.04 LTS (Precise Pangolin)

A Galaxy Nexus running Android 4.0
(Ice Cream Sandwich) has been
tested as well

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 17 / 24

Evaluation Security & Correctness

Security

Armored: nothing but the output block is written actively to RAM

But: sensitive data may be copied into RAM passively by OS side effects
(e.g. interrupt handling, scheduling, swapping, etc.)
→ observe RAM of a Armored system at runtime

Tests
Use FROST to actually perform a coldboot attack
Look for keyschedule in RAM using AESKeyFind
Look for the key in RAM (search for longest match)

Physical RAM was dumped using LiME – the Linux Memory Extractor
→ We did not find the key (longest match was 4 bytes)

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 18 / 24

Evaluation Security & Correctness

Correctness

How to ensure that our implementation is correct?
Linux kernel provides a test manager

check with official AES test vectors
Encrypt random data with Armored and decrypt with generic AES
Encrypt random data with generic AES and decrypt with Armored

→ We have good evidence that our implementation is correct

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 19 / 24

Evaluation Performance

Performance

At first Armored was 4.5 times slower than generic AES

Improvement: Larger atomic sections
Process more input blocks per atomic section

reduce number of necessary key schedules
How many blocks per section?

interactivity is no problem (1-2 microseconds vs. milliseconds)
could make sections large (up to 1024 blocks)
but: only 512 bytes per sector, i.e. maximal 32 blocks

Necessary to change modes of operation: ECB, CBC, CTR

→ two Armored variants: 16 blocks or only 1 block per section

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 20 / 24

Evaluation Performance

Performance Results

Reading 400 MB random data from encrypted RAM disk:
Generic AES: 15.55 MB/s
Armored 1x: 3.57 MB/s
Armored 16x: 6.76 MB/s

Comparison of coldboot resistant implementations:
slowdown

TRESOR 1.5
TreVisor 1.5

LoopAmnesia 2.0
Armored 1x 4.5

Armored 16x 2.3

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 21 / 24

Evaluation Limitations

Limitations
Or why do we call it proof of concept?

Installation of Armored on smartphones is not very easy
A kernel patch is not a user friendly application
You might even do not have the code or parts of it

Bootstrapping problems
How to get the key into the debug registers?
Currently via adb and a sysfs interface

Integration into the android boot prompt
Would be easily possible
Just change hardcoded cipher and use sysfs interface

Confidentiality
Almost impossible to ensure that no password or key fragments remain
within RAM

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 22 / 24

Conclusion

Conclusion

Armored withstands coldboot attacks and protects your DEK
It does not prevent:

Local privilege escalation
JTAG attacks
Loss of other sensitive data in RAM

Armored can be used
practical on ARM based laptops
on smartphones only as proof of concept

Armored is the first CPU-bound encryption for ARM devices

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 23 / 24

Thank you for your attention!

Further Information:
http://www1.cs.fau.de/armored

Johannes Götzfried, Tilo Müller (FAU) Armored September 4, 2013 24 / 24

http://www1.cs.fau.de/armored

	Motivation
	Background & Design
	Implementation
	Evaluation
	Conclusion

