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Abstract—As recently shown by attacks against Android-
driven smartphones, ARM devices are vulnerable to cold
boot attacks. At the end of 2012, the data recovery tool
FROST was released which exploits the remanence effect of
RAM to recover user data from a smartphone, at worst
its disk encryption key. Disk encryption is supported in
Android since version 4.0 and is today available on many
smartphones. With ARMORED, we demonstrate that An-
droid’s disk encryption feature can be improved to withstand
cold boot attacks by performing AES entirely without RAM.
ARMORED stores necessary keys and intermediate values of
AES inside registers of the ARM microprocessor architecture
without involving main memory. As a consequence, cold boot
attacks on encryption keys in RAM appear to be futile. We
developed our implementation on a PandaBoard and tested
it successfully on real phones. We also present a security and
a performance analysis for ARMORED.

Keywords-CPU-bound encryption, Cold boot, AES, ARM,
Android

I. INTRODUCTION

Every few years, researchers warn against something we
often forget — the remanence effect of main memory [1], [2].
The remanence effect says that RAM is less volatile than
most people expect. RAM contents fade away gradually
over time rather than being lost immediately after power is
cycled off. Attacks based on this effect have a long history
beginning in 1996, when Anderson and Kuhn [3] proposed
the first theoretic attack exploiting the remanence effect.
Later in 2001, Gutmann [4] extended the basic idea by
Anderson and Kuhn, and provided a more detailed insight
into the remanence effect. As a consequence of his insights,
Gutmann suggested not to store cryptographic keys in RAM
for a long time. Nevertheless, people continued to store all
data in RAM carefree, including encryption keys. In 2008,
encryption keys were then successfully recovered from
RAM by Halderman et al. [5]. For the first time, Halderman
et al. put a focus on breaking disk encryption by exploiting
the remanence effect. To this end, they rebooted a running
target PC by pressing its reset button, a so-called cold boot,
and loaded a mini OS from a USB thumb drive to retrieve
what is left in memory. As a result, Halderman et al. were
able to break popular encryption solutions like BitLocker
and FileVault. A recent study “on the practicability of cold
boot attacks” [6] confirms the results by Halderman et al. In
2012, cold boot attacks were developed further by Miiller
and Spreitzenbarth [7] who attacked the encryption scheme
of smartphones, in particular the encryption of Android-

driven ARM devices. They called their data recovery tool
FROST (forensic recovery of scrambled telephones).

The fact that cryptographic keys in main memory are
unsafe has been known for almost two decades. Neverthe-
less, all vendors of software-based encryption solutions
continue to store cryptographic keys inside RAM, including
Google’s Android OS. Most likely, vendors believe that
running encryption and key management without RAM
is impossible or at least very costly, or that it requires
dedicated hardware.

A possibility to overcome the threat of cold boot attacks
while keeping keys in main memory is to detain adversaries
from accessing RAM contents. This can be done, for
example, by immutable boot sequences and soldered RAM
chips as it is the case for Apple’s iPhone series and many
Windows phones. However, as recently shown by FROST,
manufacturers of Android smartphones began to provide
open bootloaders that can be unlocked with physical
access. In such systems, the disk encryption algorithm
must essentially be executed outside RAM in order to
provide resistance against cold boot attacks, as we do in
ARMORED.

A. Contributions
The contributions of our work are as follows:

e With ARMORED, we provide the first CPU-bound

encryption system for the ARM microarchitecture.
ARMORED runs the AES cipher [8] on ARM pro-
cessors without involving RAM. The key, the key
schedule, and all intermediate values of AES are
entirely stored solely in CPU registers.
In the academic world, processor bound implemen-
tations of AES are widely accepted as a protection
mechanism to cold boot attacks [9], [10], [11], [12].
However, all solutions to date have been developed for
PCs based on the x86 architecture. Due to the missing
AES-NI instruction set [13], which is available on
CPUs from Intel, it has not been clear yet if such
an implementation is possible for ARM smartphones,
too.

o We implemented AES entirely on the microprocessor
without a dedicated instruction set like AES-NI. We
solved this task by implementing AES with Gladman’s
method [14] in ARM assembly language, and by
exploiting ARM’s multimedia register set NEON [15].
Nevertheless, we often have to recompute intermediate



values of AES for new input blocks, in particular AES
round keys, because we avoid storing them in memory.
The secret key is kept persistently inside debug
registers of the ARM architecture during the entire
runtime of a smartphone (after a short bootstrapping
phase where that key is read in).

o CPU-bound encryption should be run in kernel mode
to avoid side effects like context switching that move
registers into RAM. Therefore, we provide ARMORED
as a loadable kernel module (LKM) for Android. The
ARMORED LKM must be inserted with root privileges
and, as a consequence, our solution cannot be easily
installed like third party apps for Android, but requires
the underlying OS to be modified. The installation and
setup procedure currently require expert knowledge,
such that we consider our solution as proof-of-concept
code.

« Finally, we provide a security and performance anal-
ysis of ARMORED. We prove that no critical state of
AES ever enters memory by observing a smartphone’s
RAM at runtime. On the downside, ARMORED runs
twice as slow as Android’s ordinary disk encryption.
However, we find this drawback acceptable for many
practical use cases when comparing it to the gain in
security.

We provide our proof-of-concept code for ARMORED
publicly under an open source license (GPL [16]) at
wwwl.cs.fau.de/armored.

B. Related Work

CPU-bound implementations of AES for the resistance
of disk encryption against cold boot attacks are a well
studied method in the academic world. The key as well as
the key schedule, and the encryption process itself, can be
confined to the CPU such that no encryption information
is ever released to RAM. For x86 platforms, several such
solutions exist that we briefly describe in the following.

In 2009, the ideas of the first ever mentioned CPU-
bound encryption system named FrozenCache [9] were
illustrated. FrozenCache was designed to hold keys in
CPU caches, but it has never been implemented due to
technical peculiarities dealing with CPU caches. CPU
caches cannot be controlled well by the system level
programmer as they are designed to act transparently. In
2010, a more practical solution to the cold boot problem
became known as AESSE [17]. AESSE holds AES keys in
SSE registers and is a working solution that is implemented
as a Linux kernel patch. More solutions followed in the
upcoming years with TRESOR [10], LoopAmnesia [11],
and TreVisor [12]. All these solutions store necessary keys
inside CPU registers, and — as long as no practical way to
read out CPU registers is known — they are more secure
than conventional disk encryption systems.

TRESOR (TRESOR runs encryption securely outside
RAM) uses x86 debug registers to store AES keys such
that they are not accessible from user space. Moreover,
inside debug registers AES keys are secure against cold
boot attacks. In detail, the four breakpoint registers dr0

to dr3 are used as cryptographic key storage. On 64-
bit systems, this gives a total storage of 4 - 64 = 256
bits, enough to accommodate AES-256. On the downside,
hardware breakpoints cannot be set by debuggers anymore.
Other x86 registers, like SSE [18] and general purpose
registers, are utilized to execute the AES algorithm. These
registers are used inside atomic sections only. Before
leaving an atomic section, non-debug registers are reset to
zero and consequently, they never enter RAM. Additionally,
TRESOR makes use of Intel’s AES instruction set [13]
(AES-NI) in order to compute AES rounds efficiently on
the CPU. This instruction set is available on Intel Core i5
and i7 processors, but not on current ARM processors.

C. Outline

In Sect. II, we provide necessary background information
about disk encryption in Android 4.0 and about cold boot
attacks by means of FROST. In Sect. III, we describe
technical details of our implementation of ARMORED. In
Sect. IV, we evaluate ARMORED regarding its security,
usability, correctness, and performance. And in Sect. V,
we conclude with current limitations and an outlook of
future applications for ARMORED.

II. BACKGROUND INFORMATION

We now provide background information about the
support for full disk encryption in Android 4.0 and
subsequent versions (Sect. II-A). We also give necessary
information about cold boot attacks on encryption keys, in
particular about FROST (Sect. II-B).

A. Full Disk Encryption in Android 4.0

Android supports built-in full disk encryption since ver-
sion 4.0, aka Ice Cream Sandwich (ICS). While third party
apps for Android are written in Java, disk encryption resides
in system space and is consequently written in C. Android is
essentially based on Linux, and thus Android’s encryption
is based on Linux’ disk encryption dm-crypt [19]. Dm-
crypt relies on the device-mapper infrastructure and the
Crypto-API that can map arbitrary devices as crypto devices.
Writing to a mapped device gets encrypted and reading
from it gets decrypted. As we describe in Sect. III, we
provide ARMORED as dm-crypt compatible module for
ARM-based Linux kernels. Basically, ARMORED is not
limited to Android but can be run on ordinary Linux kernels
for ARM as well.

Although dm-crypt is suitable for whole disk en-
cryption, in Android it is not used to encrypt whole
disks but the user partition only (which is mounted at
/data). This partition is encrypted by means of the mode
aes—cbc—-essiv:sha256 with 128-bit keys [20]. The
AES-128 data encryption key (DEK) is encrypted with an
AES-128 key encryption key (KEK), which is derived from
the user PIN or password through the password-based key
derivation function 2 (PBKDF2) [21].

Unlike i0S [22], which automatically activates disk
encryption when a passcode is set, Android’s encryption
is switched off by default. Once activated, it permanently
encrypts the user storage. This process cannot be undone.



In theory, if encryption is enabled user data cannot be
accessed without entering the correct PIN or password —
even though the internal flash memory gets soldered out
and accessed independently of the system software.

Notice that encryption in Android can only be activated if
PIN-locks or passwords are in use. In Android, PINs consist
of 4 to 16 numeric characters, and passwords consists of
4 to 16 alphanumeric characters with at least one letter.
Other screen locking mechanisms like pattern-locks and
face recognition are less secure, and this is why Google
forbids them in combination with encryption. Pattern-locks,
for example, can be broken by Smudge Attacks [23], and
face recognition can simply be tricked by showing a photo
of the smartphone owner [24].

B. Cold Boot Attacks with FROST

As shown by Miiller and Spreitzenbarth [7], it is possible
for an unauthorized party with physical access to an
encrypted Android phone to recover its data using cold boot
attacks. Cold booting a device technically means to briefly
cycle power off and on without allowing the OS to shut
down properly. But there is also a second meaning of the
term “cold”. RAM chips of PCs and smartphones exhibit
a behavior called the remanence effect. The remanence
effect says that RAM contents fade over time rather than
disappearing all at once. An interesting fact is that contents
fade more slowly at lower temperatures. The colder RAM
chips are, the longer their memory contents persist. Hence,
cold boot attacks are more practical when the target device
is cold.

To exploit this behavior, Miiller and Spreitzenbarth
developed the recovery tool FROST. If an adversary
gains access to a phone’s main memory before it fades
completely, he or she is able to reconstruct valuable
information from RAM with FROST. This information
includes personal messages, calendar entries, photos, and
the disk encryption key. FROST requires an adversary
to cold boot the target device by replugging its battery
briefly, because smartphones usually have no reset button.
The battery must be removed fast since a phone must
be without power for less than a second. Otherwise, the
bits in RAM begin to decay and a significant part of
data gets lost. To increase the remanence interval, and
correspondingly to increase the success rate of their attack,
Miiller and Spreitzenbarth suggest putting the target phone
into a —15°C freezer for 60 minutes before replugging
the battery. The operating temperature of a phone, which
is usually around 30°C), then decreases to less than 10°C,
significantly raising the chance for key recovery. Below
10°C, only 5% of RAM bits are decayed after one second,
whereas higher temperatures yield less reliable results.

After replugging the battery of a phone, FROST must
be installed into its recovery partition via USB and then
booted up. Once FROST is running, it can be used to
acquire full dumps of a smartphone’s RAM, to recover
the disk encryption key, and to decrypt the user partition.
Even though the authors state that FROST can break disk
encryption only if the bootloader of a phone is unlocked

and open for manipulations, which is not the case for
all devices in practice, their result proves that cold boot
attacks against ARM are a real threat. Basically, their
approach is not limited to Android but affects, for example,
the recently released Ubuntu Touch and other ARM OSs
as well. As a consequence, we believe it is important to
develop a cold boot resistant encryption solution for the
ARM microarchitecture.

III. ARMORED: DESIGN AND IMPLEMENTATION

We now give details about the first CPU-bound en-
cryption system for ARM, which we call ARMORED. We
implemented ARMORED mostly in ARM assembly, because
high level languages like C make use of the heap and stack.
We are not allowed to use these memory regions, because
in ARMORED we follow a strict security policy: no state or
intermediate state of AES, including all runtime variables,
is ever allowed to go to RAM. This security policy obviates
future crypt analyses exploiting intermediate values of AES
in RAM.

Many of the ideas we applied in ARMORED are based
on what we learned from TRESOR [10]. However, not
much from the actual TRESOR code could be applied
in ARMORED, because TRESOR is an architecture de-
pendent implementation for 64-bit x86 PCs. Contrary to
that, Android-based smartphones are 32-bit ARM devices.
The difficulty in particular was that ARM processors
have no AES-NI instruction set. Therefore, we had to
implement the AES algorithm for ARM from scratch
without hardware support from the processor. Note that
various AES implementations for ARM exist, for example
by Bernstein and Schwabe [25], but that we cannot directly
benefit from these implementations because they do not
avoid the use of RAM.

Nevertheless, we have chosen TRESOR as the basis for
our implementation and learned a lot from it regarding
its integration into the Linux kernel, because TRESOR
is implemented as a dm-crypt module for Linux. We
implemented ARMORED as a dm-crypt module, too,
because Android’s encryption feature is based on dm-
crypt. Other solutions to the cold boot problem, such as
LoopAmnesia [11] and TreVisor [12], are not derived from
dm-crypt, and consequently, they are not suited as a basis
for our implementation.

A. Key Storage Registers

The first challenge we had to solve was to find a register
set available on ARM CPUs that is qualified as AES
key storage. Since key storage registers for ARMORED
must permanently be occupied but cannot be used for
their intended purpose, we had to choose them carefully.
Unprivileged registers were automatically disqualified
because they are essential for third party apps and, even
worse, their content is periodically written into RAM as
part of context switching. Instead, we came up with a
mixed set of ARM-specific breakpoint and watchpoint
registers, because those are (1) only accessible from kernel
space, and (2) seldom used by end-users. But unlike the



debug registers in 64-bit x86 CPUs, they are too small
to hold AES-256 keys. (Note that debug registers can be
written into RAM due to context switching as well, but
we specifically prohibit that by patching respective kernel
routines.)

On ARM, the least significant two bits of each 32-bit
break- and watchpoint register are necessarily zero due
to the memory alignment in ARM. Since instructions are
consistently 32-bit wide, they are always located at 4-byte
aligned addresses. Hence, the least significant two bits are
omitted for setting break- and watchpoints because they
must be zero anyway. As a consequence, these bits are not
available as key storage. For the sake of convenience, we
divided the key-sequence into 16-bit chunks; specifically,
we use four breakpoint and four watchpoint registers, giving
us a total of 8-16 = 128 bits as key storage. This is enough
to accommodate AES-128, but not enough to accommodate
AES-256. However, since Android’s encryption feature is
based on AES-128, this does not pose a problem.

In future releases we could store more than 16 bits per
register, and if we find additional break- and watchpoint
registers, we could accommodate AES-256. ARM is more
a construction kit for CPUs than a definite regulation
for registers and instructions. The number of break- and
watchpoint registers depends on the specific platform; four
seems to be the “minimum” that is commonly available.
On our development platform (a PandaBoard) we have six
break- and four watchpoint registers.

B. NEON Multimedia Registers

Besides debug registers, ARMORED is based on the
multimedia register set NEON [15], which is available on
ARM CPUs like the Cortex-A9 series [26]. NEON is a
SIMD (single instruction multiple data) extension provid-
ing parallel 64-bit and 128-bit operations on ARM. NEON
features its own instruction set and has an independent
execution hardware, but most notably, it has a separate
register set. This register set encompasses sixteen 128-bit
registers, i.e., 2 kilobits in total, which are also addressable
as 64-bit registers. Roughly speaking, we use these registers
as a surrogate stack or heap for our AES implementation,
because we do not want to use real memory.

Transferring data between general purpose registers and
NEON registers can be done on byte level, just like storing
data in memory. Above that, we can directly perform SIMD
instructions on NEON registers that could not be performed
on memory locations. For accessing NEON registers safely
in our algorithm, we run encryption and decryption steps
inside atomic sections. Inside these sections, our code
cannot be interrupted, neither through preemption from
scheduling nor through hardware interrupts. When we take
care to reset NEON registers before leaving atomic sections,
we do not leak sensitive information into RAM but can
use these registers in a secure manner during our AES
algorithm.

Note that non-maskable interrupts (NMIs) cannot be
deferred by software-based atomic sections as used in
ARMORED. However, NMIs are mostly caused by hardware

failures and hence, often lead to a kernel panic. Up to now,
we ignore the threat of NMIs because we find it unlikely
that (1) an attacker can induce a hardware failure that (2)
leads to an NMI at the precise moment when ARMORED
is active and (3) can perform a cold boot attack in this
short time frame. However, if NMIs turn out to pose a
problem in future, a possible countermeasure would be to
patch all NMI handlers of the OS in a way that the CPU
context is not saved. Instead, the machine could be halted
after an NMI event occurs, for example.

C. Gladman’s AES Method

Unlike TRESOR, which relies on Intel’s AES-NI in-
struction set, we had to implement AES manually. On x86
CPUs, the CPU instruction aesenc performs an entire AES
round, and, broadly speaking, TRESOR calls aesenc just
10 times to encrypt one AES-128 block. Unfortunately,
it is not as easy on ARM, but we have to make use of
the AES method invented by Gladman [14]. Gladman’s
AES method is based on table lookups, and it is both
efficient and qualified for the use with only a few registers.
An additional burden with ARM, however, was that the
base address of a lookup table cannot be loaded into a
register directly as a 32-bit immediate value. The problem
is that ARM instructions, unlike x86 instructions, must
be exactly 32-bit wide, including the opcode and three
operands. Consequently, 32-bit immediate values are not
possible. To overcome this issue, we had to generate a pool
of constants near the encryption routine and used a PC-
relative, indirect addressing mode with shorter immediate
values.

Another implementation detail is the need to recompute
AES key schedules per atomic section. In common AES
implementations, the key schedule is computed once and
then stored inside RAM for performance reasons. But
in ARMORED, the break- and watchpoint registers are
occupied with the AES key and there is no space left to
store round keys. Therefore, we have to recompute round
keys for each atomic section. This is the main reason for
the performance drawback of ARMORED as compared to
generic AES (see Sect. IV-A). TRESOR faces a similar
problem, but again, TRESOR benefits from Intel’s AES
instruction set: calling aeskeygenassist suffices to generate
the next round key, such that TRESOR’s performance does
not suffer much.

For the sake of simplicity, we do not list our ARM
code here. The overall kernel patch has 1700 lines of
code from which about 500 lines are assembly code for
the AES method. The remaining code is primarily written
in C and is required to integrate our algorithm into the
kernel and to handle modes of operations like CBC (see
Sect. IV-A). For more details of our implementation, please
refer to the source code that is publicly available on our
webpage (http://wwwl.cs.fau.de/armored). As
stated above, we implemented the AES-128 variant of
Gladman’s algorithm, because this is the relevant variant for
Android. After developing ARMORED on a PandaBoard, we
tested it successfully on real smartphones with an OMAP4



chip from Texas Instruments [27]. This chip is built in
devices like the Samsung Galaxy Nexus.

IV. EVALUATION

We evaluated ARMORED regarding its performance
(Sect. IV-A), wusability (Sect. IV-B), correctness
(Sect. IV-C), and security (Sect. IV-D).

A. Performance

CPU-bound encryption schemes are known to suffer
from necessary on-the-fly computations of the AES key
schedule. On x86 systems, a performance drawback of
factor 2.04 is stated for LoopAmnesia [11], and with
AESSE [17] a performance drawback between factor 2.27
and 6.93 is given. Contrary to that, TRESOR [10] and
TreVisor [12] have a performance drawback of “only” up
to 50% in comparison to generic AES, because they utilize
Intel’s AES instruction set. With ARMORED, however,
we faced additional problems arising from the CPU
architecture, and our implementation had a consistent
performance drawback of factor 4 to 5 at the beginning.

We were able to decrease the performance drawback
of ARMORED down to factor 2.3 with the following
innovation: All CPU-bound encryption systems to date
begin a new atomic section per AES input block. That
means, AES key schedules must be recomputed for every
128 bits. This solution is most straightforward from an
implementation point of view, but to increase performance
we propose larger atomic sections. In ARMORED, we
expand the scope of an atomic section to 16 AES input
blocks, i.e., we recompute round keys of 2 kilobits
each. As a consequence, only one-sixteenth of the key
schedule computations are required in comparison to earlier
implementations. This improvement raised the throughput
of ARMORED to 6.76 MB/s in relation to 15.55 MB/s
with generic AES, i.e., to factor 2.3. (We measured the
absolute values on a PandaBoard development environment
by reading 400 MB random data from an encrypted RAM
disk.)

The interesting question with this improvement was:
How many blocks can be encrypted within one atomic
section until we get interference with the interactivity
of multitasking systems? To answer this question, we
measured the average time that is required to encrypt
single AES blocks, and we have observed that these times
are in the range of 1 to 2 microseconds. Contrary to that,
Linux scheduling slices are about 50 milliseconds and
thus, we consider atomic sections of up to 1024 input
blocks as safe. We have chosen “only” 16 blocks in our
implementation, because the performance gain from larger
atomic sections is minimal. One-sixteenth of the overhead
is already very small. We have tested that our processor
bound implementation reaches at most 7 MB/s without
round key recomputations, such that 6.67 MB/s can be
considered near-optimal.

We enhanced the important mode of operation CBC [28]
(cipher block chaining) to process 16 blocks at once.
Multiple CBC blocks are not processed in parallel, but

they are processed inside the same atomic section such
that the key schedule can be computed once. Technically,
we export cbc (armored) to the Linux Crypto-API, and
assign a higher priority to it than to the generic versions of
AES and ARMORED. That means, whenever CBC is used
and more than one block is waiting — which is usually
the case in full disk encryption — our optimized variant is
automatically executed by the Linux kernel.

B. Usability

At the time of this writing, we copy the secret AES key
into the debug registers of a smartphone via adb (Android
debug bridge). To this end, we must connect the phone via
USB to a computer, login as root, and write a sequence of
keybits via Linux’ sysfs interface into the debug registers.
Afterwards, we run a cleanup procedure to remove all key
residues from RAM. We provide a small userland utility
that writes the key via sysfs into the kernel and runs the
cleanup procedure automatically. According to our security
tests (see Sect. IV-D), no key residues are left behind.

Admittedly, this process is impractical for end-users,
and that is why we consider ARMORED as a proof-of-
concept implementation. In future, Android’s graphical
PIN or password prompt must be patched in a way that
the encryption key is directly written into debug registers.
Although we did not implement this feature yet, we believe
it is practical, and we believe it would make processor
bound encryption available to a large number of end-users.

C. Correctness

To prove the cryptographic correctness of ARMORED,
we used the official test vectors for AES that are listed
in FIPS-197 [8]. ARMORED is integrated into the Crypto-
API in a way that the Linux kernel test manager verifies
the correctness of ARMORED based on these vectors each
time the module is loaded. Moreover, we encrypted user
partitions with ARMORED, decrypted them with generic
AES and vice versa. Along with structured data like text
files, we created large random files on these partitions.
We compared the unencrypted versions of the files and
found them to be equal. This is a strong indication for the
correctness of our implementation, because it does not only
prove the correctness in terms of predefined test vectors,
but also regarding a great amount of random data.

D. Security

We evaluated ARMORED’s resistance against (1) cold
boot attacks, and (2) against other attacks such as local
privilege escalations. We describe each of them in the
following.

1) Cold Boot Attacks: To evaluate ARMORED’S re-
sistance against cold boot attacks, we reproduced cold
boot attacks against Samsung Galaxy Nexus devices with
FROST (see Sect. 1I-B). As we expected, we could not
recover the key, the key schedule, or any intermediate
state of AES. However, key recovery by FROST had to
fail because it bases upon the AES key schedule that
we entirely discard in ARMORED. That is, even though
ARMORED would accidentally leak the secret key into



RAM (e.g., because of context switching) we would not
be able to recover it with FROST. Hence, we searched
for known patterns of the key directly in RAM, because
unlike real attackers we know the secret key in advance.
Again, we acquired memory dumps by means of FROST,
and additionally we acquired memory dumps from running
devices with the forensic module LiME [29]. With LiME,
we were able to observe a smartphone’s RAM at runtime
without the need to actually reboot the phone. Thereby,
we had more reliable results because cold boot attacks
are error-prone and may falsify parts of the key. As we
expected, also when observing RAM at runtime we could
not find significant matches of the key or parts of it. We
observed the RAM multiple times and at different system
states during our tests.

2) Other Attacks: CPU-bound encryption systems defeat
cold boot attacks, but they are vulnerable to attackers who
have write access to the system space. An attacker with root
privileges, for example, can easily load a kernel module
that moves the key from CPU registers into main memory.
However, given that our environment guarantees kernel
integrity, CPU-bound encryption systems are more secure.
If there is no way to write into system space, there is
no way (that we know of) to recover key bits from CPU
registers.

Blass and Robertson refer to this property as the kernel
integrity property [30]. This property says that attackers
are disallowed to execute code in the context of the kernel.
Unfortunately, such an assumption is hard to generalize
for x86 PCs. In practice, malware can often gain root
privileges, and DMA attacks can write into system space
through physical access. Indeed, CPU-bound encryption
schemes do not depend on the integrity of the kernel,
because they are primarily invented to defeat cold boot
attacks, but this property is preferable.

For Android smartphones, we believe that the desired
kernel integrity property can be guaranteed up to a certain
degree, contrary to ordinary x86 PCs, for the following
reasons:

o System privileges: In Android, the root account is
disabled by default and can be re-enabled only by
installing a custom Android ROM. On regular Android
phones, there is no possibility to load kernel modules
for both designated users and potential attackers.
Besides LKMs, Linux users can write into system
space via /dev/kmem. This device, however, is disabled
in Android kernels as well.

o Direct memory access (DMA): Another way to write
into system space are DMA attacks. Solutions like
TRESOR and ARMORED cannot protect against DMA
attacks on running machines, as proven in 2012 [30]:
“Using this [DMA] capability, we demonstrate that an
attacker can expose a CPU-bound encryption key by
injecting a small piece of code into the operating
system kernel. This code transfers the encryption
key from the CPU into RAM, from which it can
be accessed using a standard DMA transfer”” DMA
ports like FireWire [31], [32] and Thunderbolt [33],

[34] allow compromising the system space and vi-
olating kernel integrity. However, DMA ports are
commonly not available on smartphones. Virtually all
smartphones have USB ports for data transfers but
no FireWire or Thunderbolt port. USB ports are not
DMA capable.

o JTAG interfaces: Today, Android-based smartphones
often have a built-in and automatically enabled JTAG
interface. JTAG (joint test action group) is a debug
port for microprocessors of embedded systems. It
allows external debuggers to communicate with the
embedded chip in order to set break- and watchpoints.
For attackers, the JTAG interface on ARM CPUs
might become the counterpart to DMA ports on x86
PCs. JTAG can break kernel integrity with physical
access. That is why smartphone vendors should disable
it in future releases of their mass market products.
The JTAG interface is a security gap for consumer
products [35].

To sum up, CPU-bound encryption protects against cold
boot attacks but not against many other practical attacks.
Only if we additionally take integrity of the kernel
for granted, which is difficult in general, CPU-bound
encryption can defeat more attacks. We believe, however,
that Android-based smartphones without JTAG interface
come close to the kernel integrity property. (Indeed, our
argumentation is based on the fact that root accounts are not
available on Android, but it ignores the threat of privilege
escalations due to kernel bugs.)

V. CONCLUSIONS AND OUTLOOK

Concluding, as it has recently been proven by FROST,
cold boot attacks enable adversaries with physical access to
a phone to extract some or all of its data, even if encryption
is enabled. With ARMORED, we give a concrete prototype
implementation on how a countermeasure against cold
boot attacks can look like on ARM. ARMORED performs
encryption solely on CPU registers, thus thwarting attempts
to reveal sensitive key material from RAM. Therefore,
ARMORED can be classified as “Anti-FROST” as it prevents
cold boot attacks on the encryption key.

A. Limitations

CPU-bound encryption like ARMORED can “only” se-
cure the disk encryption key. Other RAM contents, such
as contact lists, calendar entries, personal messages, and
browser caches, remain unencrypted in RAM and are
thus still accessible to an adversary. So the most notable
limitation is that ARMORED cannot protect information
other than disk encryption keys, but other CPU-bound
encryption systems face the same limitation.

Another limitation is, as stated above, that ARMORED
is insecure regarding attacks via the JTAG interface. Tools
like the RiffBox [36] could be used in future to defeat
ARMORED, just as TRESOR can be defeated by DMA
attacks, because in that case the kernel integrity property
is not given.

Another notable limitation is the performance of
ARMORED. The advantage of ARMORED, that it runs on all



ARM CPUs with a NEON instruction set, comes at the cost
of encryption speed. However, in future we want to support
dedicated crypto instructions and hardware accelerators
of recent advancements in available ARM hardware. For
example, since ARMvVS (e.g., Cortex-Al5) specialized
AES and SHA instructions are supported directly by the
main CPU. Most likely, ARMORED can benefit from these
instructions, leading to a higher encryption throughput.

B. Outlook

To defeat cold boot attacks, systems like ARMORED must
be integrated into future releases of Android. Basically,
ARMORED exports a cold boot resistant interface of AES-
128 to the Linux dm-crypt API, making it available
for Android encryption. In practice, however, ARMORED
must be considered as work in progress, because it is
not well integrated into Android’s boot process yet. The
problem during bootstrapping is: How do we get the initial
encryption key from end-users into debug registers? This
must securely be handled by Android’s PIN prompt in the
future.

In comparison to its PC-based counterpart TRESOR,
ARMORED inherits the following advantages from Android:

« Single keys: A point of criticism against TRESOR is
that it supports single encryption keys only. Encrypting
two partitions with two different keys is impossible
because debug registers cannot store a second key.
In Android, however, there is just a single encrypted
user partition.

o Suspend-to-RAM: Another problem in TRESOR is to
handle the ACPI mode S3 (suspend-to-RAM). Since
CPUs are switched off during S3, the encryption key is
irretrievably lost and must be re-entered upon wakeup.
On Android-based ARM devices, however, there is
no sleep mode that switches off the CPU.

o Kernel integrity: As stated in Sect. IV-D, the kernel
integrity property can be better guaranteed on Android
devices, because root accounts are disabled and DMA
ports are not present. (However, the weak point of
many devices today is the JTAG port which is often
unnecessarily present.)

o Official releases: It is presumably impossible to
get TRESOR into the Linux mainline because it
violates the intended use of debug registers and breaks
compatibility with existing applications like debuggers.
Android, on the other hand, maintains a custom fork
of the Linux kernel and does not have ambitions of
strict backwards compatibility.

o Business competition: Apple’s iOS is presumably
secure against cold boot attacks. We did not investigate
the case of Apple further, but the following statement
from Apple lets us believe so: “Shortly after the user
locks a device [..] the decrypted class key is discarded,
rendering all data in this class inaccessible until the
user enters the passcode again” [22]. That could mean
Apple wipes the key from RAM each time the screen
gets locked and re-derives it from the PIN only when
the screen gets unlocked.

To sum up, we believe that Android can become the first
platform where CPU-bound encryption is widely deployed
in practice. Cold boot resistant implementations for mobile
Android devices are more meaningful than for ordinary
PCs. Android is the only OS today that is both completely
open-source and widely in use by end-users.
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